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Abstract

Decarbonizing the power sector requires major investments in renewables and
storage. Though often seen as complementary, these technologies can act as substi-
tutes from an economic perspective. When renewable output correlates positively
with demand and capacity is low, storage may lower renewable profits, and vice
versa, especially with strategic thermal producers. In markets with negatively
correlated renewable availabilities, like solar and wind, storage can benefit one
while disadvantaging the other. These findings inform policies on the timing and
effectiveness of mandates or subsidies, suggesting that solar investments may need
an initial push before supporting storage. Simulations of the Spanish market show
that, at high solar penetration, storage boosts solar but reduces wind profits.
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1 Introduction

Investments in renewable energy are essential for decarbonizing the economy. However,
the intermittent nature of solar and wind production makes it challenging to maintain
security of supply at all times. Storage technologies, such as batteries and pumped
hydro, address this issue by shifting supply from periods of excess renewable generation
to periods of scarcity, thereby reducing production costs and carbon emissions.

Reflecting this technological complementarity, conventional wisdom holds that re-
newables and storage are also strategic complements from an economic perspective.1

Storage is expected to increase demand and prices when renewables are abundant, ben-
efiting renewable energy producers, while the seasonality of renewables is assumed to
enhance arbitrage opportunities for storage firms.

However, this paper demonstrates that this view is incomplete. The key insight is
that storage and renewables can also act as competitors. Market prices, determined
endogenously by demand and supply fluctuations, play a crucial role in shaping this
interaction by influencing the timing of charge and discharge decisions. Storage can
depress the prices captured by renewables if it discharges when renewable availability is
high, while renewables can diminish storage owners’ arbitrage profits by narrowing price
differences over time. The strategic interaction between renewable energies and storage
impacts the optimal design and timing of support policies.

This paper identifies the conditions under which renewable energy and storage behave
as either strategic substitutes or complements, emphasizing the relevance of the demand
profile and the technological mix of the power system under consideration. It further
examines how these relationships are influenced by market power in both generation and
storage, as well as by the presence of transmission constraints.

In particular, the analysis shows that strategic substitutability between renewables
and storage can arise in the early phases of solar deployment or in systems with a diverse
mix of renewable technologies. This effect is most salient in markets with mild trans-
mission constraints, where the prices faced by renewable producers are primarily shaped
by the interplay between their availability, demand conditions, and storage behavior.

To obtain these results, we develop a model of wholesale market competition in an
electricity market where strategic thermal producers coexist with renewable and storage
firms. Seasonal fluctuations in demand and renewable availability create price variations

1For instance, see The Economist (2019): “Abundant, reliable, clean electricity is the foundation on
which many green investments and policies rest. And to work well, clean electricity, in turn, depends
on storage.”
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over time, which are further amplified by the exercise of market power by thermal produc-
ers. Storage owners capitalize on these price differences by charging energy when prices
are low and discharging when prices are high, thereby influencing market price dynam-
ics. The interaction between renewables and storage is shaped by the endogenous timing
of storage decisions, which can either enhance or reduce storage profitability depending
on renewable generation patterns. Similarly, energy storage impacts the profitability of
renewables by altering price fluctuations through its charging and discharging cycles.

Our model predicts that the correlation between renewable production and market
prices plays a key role in shaping storage behavior and the profitability of both renew-
ables and storage. A positive correlation means that renewables tend to be available
when prices are high, coinciding with storage discharge periods. In this case, expanding
storage capacity lowers prices precisely when renewables sell a significant share of their
output, reducing their profitability. Likewise, increasing renewable capacity depresses
prices during storage discharge periods, decreasing the profits of storage. Conversely,
when the correlation between renewable availability and market prices is negative, stor-
age and renewables reinforce each other, increasing their profitability.

When should we expect this correlation between prices and renewables availabil-
ity to be positive or negative? Electricity prices depend on consumption patterns and
renewables availability, which vary across markets and technologies. Generally, wind
production is higher at night, when demand is lower, leading to a negative correlation
between wind availability, demand and prices. For this reason, we refer to wind as a
countercyclical technology. Conversely, solar production peaks during the day, when
demand is high, i.e., a procyclical technology, resulting in a positive correlation between
prices and solar production when solar capacity is small. However, as solar capacity
increases, prices are depressed during peak solar hours, turning the correlation between
prices and solar production negative. Consequently, wind and storage are strategic com-
plements, while solar and storage become strategic complements only if solar capacity is
sufficiently large. Otherwise, when solar capacity is small, solar and storage investments
are strategic substitutes.

The above conclusions should be qualified in markets where both wind and solar
coexist, or where existing renewable technologies have negatively correlated availabilities
(e.g., sunlight during the day and stronger winds at night). In such cases, storage
investments necessarily crowd out one of the renewable technologies, and vice versa.
Specifically, there is substitutability between storage and the relatively scarce renewable
technology, which is not abundant enough to reverse the correlation between market
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prices and its own output. This condition is more stringent for solar power than for
wind power, as solar power must counteract the natural procyclicality of its output.

Market power in the storage segment or binding transmission constraints enrich the
model without altering its core predictions. When storage firms exert market power,
the fundamental condition for complementarity between renewable energy and storage
remains unchanged. However, underinvestment in storage emerges as firms strategi-
cally withhold capacity to maximize arbitrage profits, thereby increasing the subsidies
required to reach a large renewable deployment target.

In contrast, transmission congestion can influence the nature of the interaction be-
tween storage and renewables. Specifically, when storage assets are co-located with re-
newable plants in the same node of the network, congestion strengthens complementarity
by ensuring that market prices respond solely to fluctuations in renewable generation.
In this setting, storage owners consistently charge when renewables are abundant and
discharge when they are scarce, independently of broader system-wide demand dynam-
ics.

These insights have important policy implications. When renewables are counter-
cyclical (e.g., wind), subsidizing or mandating one technology – whether renewables or
storage – creates a positive feedback loop that enhances investments in both. In contrast,
when renewables are procyclical (e.g., solar), if the renewable installed capacity is below
a critical mass, mandating and subsidizing investments in renewables or storage can act
as a barrier to the other technology. This can result in a market equilibrium with low in-
vestments in both renewables and storage, leading to high carbon emissions. Therefore,
in these markets, an initial push to renewables is necessary to surpass the critical mass
and reverse the correlation between renewables and prices, prompting storage operators
to charge and discharge in ways that benefit renewables. Once the strategic comple-
mentarity between storage and renewables is triggered, policies aimed at promoting one
technology will also promote the other, thus reducing the subsidies needed to meet the
mandates.

We illustrate these theoretical findings with detailed simulations of the Spanish
wholesale electricity market, focusing on the comparison between scenarios of high and
low renewable penetration. Specifically, we consider two cases: the Spanish electricity
market as of 2019, when renewable penetration was relatively low (with the share of
solar and wind capacity at 43%), and projections for 2030, when these capacities are
expected to reach 82%. For each scenario, we consider various levels of storage capacity.

In the low renewables scenario, the correlation between prices and renewable produc-
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tion is low, resulting in negligible impacts on the profits of other technologies from the
entry of either type. When solar production becomes abundant, the correlation between
prices and solar (wind) production becomes negative (positive), as solar generation sub-
stantially depresses market prices during midday peaks. Consequently, solar and storage
investments complement each other, while storage negatively impacts wind producers.

In line with this, our simulations show that increasing storage capacity from 4 GWh
to 40 GWh in the high renewables scenario raises solar captured prices by 16%, while
wind captured prices decrease by 14%. Increasing storage capacity reduces wind curtail-
ment (i.e., the loss of excess production when it cannot be stored), but this effect is not
strong enough to overturn the price reduction. Thus, increasing storage capacity bene-
fits solar while harming wind. Furthermore, storage benefits from renewables expansion,
with arbitrage profits and capacity utilization increasing tenfold from the low to high
renewables scenario. However, as more storage capacity is introduced into the market,
the cannibalization effect of storage technologies intensifies in the renewables-dominated
scenario.

The simulations also show that expanding storage capacity creates additional social
benefits, the more so when the market is competitive. In particular, storage reduces gen-
eration costs (by substituting expensive peak thermal plants), lowers carbon emissions
(by reducing renewable curtailment), and decreases market prices, especially in the high
renewable scenario. These effects add to the social benefits of storage technologies, pro-
viding a rationale for policy support. However, our theoretical and quantitative results
also suggest that policymakers should prioritize expanding renewable power (especially
solar) until a critical renewable mass is reached before introducing policies aimed at
promoting storage.

Related Literature. This paper contributes to the literature on short-run competi-
tion and long-run capacity investment in wholesale electricity markets (e.g., Borenstein
and Holland, 2005; Bushnell et al., 2008). A recent branch of this literature addresses
how to facilitate investments in intermittent renewable energy sources, examining dif-
ferent instruments such as capacity mechanisms (e.g., Fabra, 2018; Llobet and Padilla,
2018; Elliott, 2022) and transmission expansion (e.g., Davis et al., 2023; Gonzales et al.,
2023). This paper relates to this literature by exploring the role of storage technologies
in wholesale electricity markets as they interact with renewable energies.

Economists have recently studied the economics of energy storage from various per-
spectives. Liski and Vehviläinen (2025) examine the impact of storage on consumer
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prices, while Andrés-Cerezo and Fabra (2023) explore its competitive implications, con-
sidering market power in generation and storage and allowing for vertical integration be-
tween the two but without incorporating renewable energies. Roger and Balakin (2025)
analyze the case of a storage monopolist operating over two periods, where demand is
deterministic but subject to random shocks. Additionally, Carson and Novan (2013)
and Ambec and Crampes (2021) analyze the impact of storage on emissions, which is
reminiscent of the effects of dynamic pricing on emissions (Holland and Mansur, 2008).
Junge et al. (2022) explore the efficiency properties of operation and investment decisions
in perfectly competitive electricity markets with storage. Reynolds (2024) complements
these analyses by highlighting the role of energy storage in providing ancillary services
that are essential for keeping the electricity system in balance.

However, few studies explicitly address the interaction between storage and renew-
ables. Three empirical studies support our theoretical findings. In California, Butters
et al. (2025) find that for the first storage unit to break even, the renewable share must
reach 50%. They also note that storage mandates reduce solar and wind revenues by 14
million USD annually due to battery discharges during solar generation peaks. Karadu-
man (2021) reports that in South Australia, storage lowers solar revenue by shading high
prices but boosts wind returns by reducing curtailment. Holland et al. (2024) show that
in the US, cheaper storage diminishes renewable investments, potentially driving renew-
ables out if storage costs drop to zero.2 Our model provides a theoretical framework to
rationalize these results and quantifies the relationship between storage and renewables
in the context of the Spanish wholesale electricity market. Moreover, we focus on the
implications of this relationship for policy design.

More closely related to our work, Linn and Shih (2019) examine how storage invest-
ment costs influence emissions by analyzing the price responsiveness of fossil-fuel and
renewable generators. Their study offers valuable insights into the environmental effects
of storage, demonstrating that these technologies can function as either complements or
substitutes depending on market conditions. However, their analysis does not explicitly
address how the interaction between storage and renewables evolves with different levels
of renewable penetration, a key focus of our work. In addition, we extend the analysis
by incorporating the strategic behavior of storage and generation firms, as well as the
impact of transmission constraints.

From an engineering perspective, Peng et al. (2024) use stochastic control theory
2Bollinger et al. (2024) focus on the demand-side, studying the potential complementarity between

energy storage and rooftop solar. In contrast, we focus on utility-scale battery storage.
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to analyze the interaction between storage and renewables, concluding that these tech-
nologies may substitute for one another. However, their approach does not identify
the correlation between prices and renewable production as the primary determinant
of substitutability. Moreover, their model assumes centralized optimization, thereby
overlooking the role of market power and transmission constraints. Zhao et al. (2022)
highlight strategic competition in storage investments but focus exclusively on arbitrage
revenues, without considering renewable-storage complementarity or the effects of spatial
constraints.

Relatedly, Gowrisankaran et al. (2025) examine the interaction between wind inter-
mittency and hydroelectric power (an imperfect form of storage), showing their comple-
mentarity at low levels of wind penetration. By incorporating market power for both
generation and storage while explicitly modeling transmission constraints, our paper
bridges these gaps and provides novel insights into the relationship between storage and
renewable energies.

Finally, our paper relates to a literature that explores the effectiveness of environ-
mental policies in electricity markets (e.g., Langer and Lemoine, 2022; Stock and Stuart,
2021). In particular, it speaks to debates about the desirability of adapting support
schemes and regulatory frameworks to take into account complementarities or substi-
tutabilities between different technologies, particularly when firms’ strategic decisions
are taken into account (i.e., Fabra and Montero (2023); Fioretti et al. (2024); Fabra and
Llobet (2025)).

The remainder of the paper proceeds as follows. In Section 2, we describe the the-
oretical model. In Section 3, we identify conditions for renewables and storage to be
strategic complements or substitutes, and analyze the policy implications in Section 4.
The baseline model is extended in Section 5 by introducing market power in storage
and binding transmission constraints. Simulations of the Spanish electricity market in
Section 6 illustrate our baseline findings. Section 7 concludes. The appendix contains
the proofs of the model.3

2 Theoretical Framework

We model a wholesale electricity market with perfectly inelastic demand. Demand moves
over time around its mean, θ, according to deterministic cycles of amplitude b (with

3The online appendix contains extensions and details about the simulations.
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0 ≤ b ≤ θ).4 At time t, demand is given by

D(t) = θ − b sin t. (1)

Figure 1 illustrates demand fluctuations over time. Demand first takes the value θ

at t = 0. It then decreases in t up to t = π/2 when it takes the value θ − b, and it
subsequently increases in t up to t = 3π/2 when it takes the value θ + b. Last, demand
reverts to θ at t = 2π, after which the cycle repeats itself. This pattern mimics a
representative electricity demand pattern over a day.

Electricity demand can be served by intermittent renewable energies (wind or solar),
thermal generation (gas or coal plants), and storage. These assets are owned by inde-
pendent firms.5 We assume price-taking behavior of storage and renewable operators,
but we allow for market power in thermal generation.6 This configuration is common in
electricity markets, where thermal assets are typically owned by the incumbent firms,
while renewable and storage assets tend to be in the hands of entrants.

The marginal costs of renewable energies are normalized to zero up to their available
capacity ω(t)KR, where KR denotes the installed renewable capacity and ω(t) ∈ [0, 1]
is the capacity factor, which moves in deterministic cycles around its mean (normalized
to 1/2), with amplitude 1/2. In particular,

ω(t) = 1
2 (1 − α sin t) , (2)

where the parameter α takes one of two values, {−1, 1} . Initially, at t = 0, the capacity
factor is 1/2. Whether it subsequently increases or decreases depends on α, as illustrated
in Figure 1. Consider first the case with α = 1. The capacity factor decreases to zero
as t approaches π/2, then increases with t until reaching a maximum value of 1 at
t = 3π/2. Finally, it returns to 1/2 at t = 2π, after which the cycle repeats. Since this
pattern mirrors the demand cycle, we say that renewables are procyclical with respect

4In practice, predictable changes in demand and renewable energy availability are quantitatively
more significant than unpredictable ones. To demonstrate this, using data from the Spanish electricity
market, we regress realized demand, solar generation, wind generation, and net demand, on their
respective day-ahead forecasts. The variation in these outcome variables is almost entirely explained by
the day-ahead, as indicated by the high R2 values obtained in all four regressions: 0.998, 0.993, 0.987,
and 0.990, respectively. Moreover, in each case, the estimated coefficient on the forecast variable is not
different from one. See Table D.1 in the Online Appendix D.1 for details.

5See Andrés-Cerezo and Fabra (2023) for a model with vertical integration between thermal genera-
tors and storage firms, and Acemoglu et al. (2017) and Fabra and Llobet (2025) for the analysis of the
behavior of firms with diversified portfolios, including renewable and thermal generation assets.

6In Subsection 5.1, we allow for strategic behavior by storage firms.
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to demand when α = 1. Alternatively, if α = −1, renewable availability decreases as
demand increases. In this case, we describe renewables as countercyclical. 7

Figure 1: Diurnal patterns of demand and renewable energies
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Notes: This figure illustrates the time evolution of electricity demand, D(t) (black curve), and renewable
energy supply, ω(t)KR, under two scenarios: procyclical (yellow curve, K+

R ) and countercyclical (blue
curve, K−

R ). Demand follows a sinusoidal pattern around the average level θ, with amplitude b. In the
procyclical scenario, renewable supply is positively correlated with demand – peaking when demand
peaks. In contrast, the countercyclical scenario features renewables peaking when demand is at its
lowest. In both cases, total renewable capacity is KR.

Thermal generation has quadratic costs, which we assume result in the following
linear marginal costs at the industry level: c′ (q(t)) = q(t).8 Following Andrés-Cerezo
and Fabra (2023), we assume that there are two types of thermal generators: a dominant
firm (D) and a set of fringe firms (F ). For each cost level, the dominant firm owns a
fraction β ∈ (0, 1) of the thermal assets, whereas the fringe owns the remaining fraction
(1 − β). Note that β is a measure of the dominant firm’s size, i.e., at any given price,

7An alternative specification that captures a smoother correlation between demand and renewable
energies would be ω(t) = 1

2 (1 − sin(t + a)), with a ∈ (0, π). In the Online Appendix A we allow for
this possibility, and we show that the qualitative results remain unchanged.

8In practice, costs jump from one technology to the other, which could have implications for the
price elasticity of supply at off-peak and peak levels. The model could be extended to accommodate
these.
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the higher β the more it can produce without incurring losses. As it will become clear,
the dominant firm’s size is a proxy for market power.

Operating storage facilities entails no costs other than buying the electricity that will
be sold, up to the storage capacity KS.9 We use qB(t) and qS(t) to denote the quantities
that are bought and sold by storage facilities at time t.

Throughout the baseline analysis we treat KS and KR as given parameters and fully
characterize the operation stage (production and storage decisions). We later map oper-
ating profits into investment break-even subsidies when studying investment mandates.
In particular, we assume that regulators set technology mandates K̄S and K̄R and intro-
duce investment subsidies ηS, ηR > 0 that allow firms to break even (under free entry into
the market). We also assume that investment costs are given by the functions Ci (Ki)
for i = {S, R}, with C ′

i (Ki) > 0 and C ′′
i (Ki) ≥ 0.

3 Market Equilibrium

For given capacities, generation firms decide how much to produce, and storage firms
decide when and how much energy to charge and discharge, under the assumption of
perfect foresight over prices.10

Since renewable energies have zero marginal costs and operate competitively, they
always produce at their full capacity. This implies that net demand (ND), i.e., market
demand minus renewables, can be written as:

ND(t, KR) ≡ D(t) − ω(t)KR =
(

θ − KR

2

)
+
(

α
KR

2 − b
)

sin t. (3)

For simplicity, we assume that renewable capacity is sufficiently small so that net demand
is always positive and renewable production is never in excess.11 The thermal dominant

9Energy storage typically entails a round-trip efficiency loss. The model is robust to adding
it (Andrés-Cerezo and Fabra, 2023). We also omit constraints on how fast storage plants can
charge/discharge. Such constraints, if binding, would lead to smoother charge/discharge decisions. How-
ever, the main insights of the model would remain qualitatively unchanged given that charge/discharge
decisions would in any event take place in low/high-priced periods, as shown later.

10Butters et al. (2025) show that assuming perfect foresight biases results in overestimating the
profitability of arbitrage by storage owners. Hence, relaxing this assumption would likely result in
lower investments in storage. However, in the Spanish market, predictable changes in demand are
quantitatively more important than the unpredictable ones, allowing for good price forecasts (See the
Online Appendix D.1).

11This assumption simplifies the analysis at the cost of ruling out curtailments of renewable energy,
i.e., when consumers’ demand is below renewable production. The main results of the model do not
rely on this assumption. However, as will be discussed below, when renewable capacity is sufficiently
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producer chooses its output qD(t) in every period in order to maximize its profits over
its residual demand:

max
qD(t)

πD =
∫ 2π

0
[p (t; qD) qD(t) − cD (qD(t))] dt, (4)

where the market price is equal to the fringe’s marginal cost,

p (t; qD) = ND(t, KR) − qD(t)
1 − β

·

The following lemma characterizes the behavior of the dominant and fringe thermal
firms and the resulting market price in the absence of storage.

Lemma 1 The quantities produced by the dominant and fringe producers are given by

qNS
D (t) = β

1 + β
ND(t, KR) <

1
1 + β

ND(t, KR) = qNS
F (t).

Therefore, equilibrium prices in the absence of storage (pNS) are:

pNS(t) = 1
1 − β2

[(
θ − KR

2

)
+
(

α
KR

2 − b
)

sin t
]

. (5)

Renewable energies influence equilibrium prices through two channels, as captured
by the two terms in parentheses in equation (5). First, through the first term, renew-
able capacity KR reduces the price level. Second, renewable capacity affects the price
dynamics through the interaction of KR and sin t in the second term. In particular, re-
newable capacity affects the correlation between equilibrium prices and demand, which
is positive (negative) if this term is positive (negative), i.e., if α = 1 and KR < 2b, or if
α = −1 (otherwise). Furthermore, an increase in renewable capacity flattens (amplifies)
the price cycle when prices and renewable production are positively (negatively) corre-
lated. These effects are more pronounced the larger the size asymmetries across firms
(equivalently, the higher the degree of market power), as the scaling factor in the price
equation (5) increases in β.

These dynamics are summarized in the following lemma.

Lemma 2 Suppose there is a single renewable technology with capacity KR and α ∈
{−1, 1}. For all β ∈ (0, 1), (i) equilibrium prices and demand correlate positively if

large to generate excess supply, the strategic complementarity between renewable energy and storage
weakens.
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and only if α = 1 and KR < 2b, or if α = −1 for all KR. (ii) Equilibrium prices and
renewables correlate positively, and renewables flatten the price cycle if and only if α = 1
and KR < 2b.

On the one hand, if renewable energies are procyclical (α = 1), the correlation
between prices and renewable energies depends on the level of renewable capacity. If
KR < 2b, prices positively correlate with renewable energies. Moreover, an increase in
renewable capacity flattens price differences across time. Indeed, when KR = 2b, prices
become time-invariant. Further increases in renewable capacity, so that KR > 2b, flip
the correlation between prices and renewable energies from positive to negative while
amplifying the price differences across time.

On the other hand, when renewable energies are countercyclical relative to demand
(α = −1), prices correlate negatively with renewable energies for all KR. Moreover, an
increase in renewable capacities enlarges the price differences across time.

Through the scaling factor 1/(1 − β2), market power in thermal generation (proxied
by β) increases average prices and affects the amplitude of the price cycle. However,
market power does not change the sign of the correlation between prices and renewables.

These properties are important for characterizing storage decisions, given that stor-
age firms charge (discharge) when prices are low (high) and earn profits by arbitraging
price differences. Formally, the problem of storage firms is to maximize arbitrage profits
by choosing when and how much to buy, qB(t), and sell, qS(t), taking market prices as
given:

max
qB(t),qS(t)

ΠS =
∫ 2π

0
p (t) [qS(t) − qB(t)] dt, (6)

subject to two intertemporal constraints: they cannot store energy above capacity and
cannot sell more energy than previously bought. Since prices in (5) reach a single
minimum and maximum within each cycle, storage firms always find it optimal to fully
charge (discharge) their batteries when prices are low (high). This allows writing the
intertemporal constraints as: ∫ 2π

0
qB(t)dt ≤ KS. (7)

∫ 2π

0
qB(t)dt ≥

∫ 2π

0
qS(t)dt. (8)

The following Lemma characterizes the equilibrium storage decisions and their price
impacts.12

12A formal statement can be found in the Appendix.
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Lemma 3 The equilibrium strategy of competitive storage owners is characterized as
follows:

(i) They charge a quantity q∗
B(t) during all periods t ∈ [tB, tB], corresponding to the

lowest prices in the absence of storage. The quantities q∗
B(t) are such that equilib-

rium prices are fully flattened across these periods at p∗(t) = pNS(tB) = pNS(tB),
and storage is fully charged by period tB.

(ii) They discharge a quantity q∗
S(t) during all periods t ∈ [tS, tS], corresponding to

the highest prices in the absence of storage. The quantities q∗
S(t) are such that

equilibrium prices are fully flattened across these periods at p∗(t) = pNS(tS) =
pNS(tS), and storage is fully depleted by period tS.

(iii) They remain inactive in all other periods, implying p∗(t) = pNS(t).

The behavior of competitive storage operators is illustrated in Figure 2. Storage
owners purchase electricity during the lowest-priced periods, i.e., t ∈ (tB, tB), and sell
during the highest-priced periods, i.e., t ∈ (tS, tS), until prices are fully flattened within
these intervals.

When storage capacity is small, it constrains firms’ ability to arbitrage across all
profitable periods, resulting in some periods of inactivity. As storage capacity increases,
the number of active periods grows, eventually reaching a point where capacity is no
longer a binding constraint. At that stage, storage operators are active in all periods,
and prices become completely flattened across time. This exhausts all further arbitrage
opportunities.

Importantly, when prices and renewable energies are positively correlated (Lemma
2 (ii)), discharging occurs when renewable availability is high. Thus, as shown in the
upper left panel of Figure 2, an increase in storage capacity pushes prices down precisely
when renewable energies are relatively more abundant.13 While an increase in storage
capacity also pushes prices up when charging, this occurs when renewable production is
lower. Consequently, expanding storage capacity reduces the profits of renewable energy
producers.

13Note that our differentiability assumption on the cost function of thermal generators implies that
changes in both renewable and storage capacity always affect the market price. In real-world electricity
markets, the industry cost function presents jumps, and the marginal cost of the price-setting technology
may be the same for different demand levels. In these cases, marginal increases in capacity may not
have price impacts if the peaking technology remains unchanged across periods. The same would occur
in the presence of excess renewables, as off-peak prices would remain flat at zero.
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In all periods, market prices go down when renewable capacity goes up. As shown in
the upper right panel of Figure 2, when prices and renewable generation are positively
correlated, this price-depressing effect is more pronounced during periods when storage
firms discharge rather than when they charge. Moreover, by shrinking the price spreads,
higher KR reduces the arbitrage profits of storage owners. Storage firms optimally
respond by smoothing charging and discharging, but this only partially mitigates the
negative impact of renewable energies on storage profits. The opposite holds when prices
negatively correlate with renewable energies (lower panels in Figure 2).

Figure 2: Profit impacts of increasing storage and renewable capacity
(a) Storage and Renewable Energies are Substitutes
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(b) Storage and Renewable Energies are Strategic Complements
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Notes: These figures depict demand (black), production of renewable energies (yellow), and prices
(green) over time, for the case of procyclical renewables (α = 1) and no market power in thermal
generation (β = 0). The upper panels illustrate the case of a small renewable capacity (KR < 2b),
implying a positive correlation between prices and renewables. The lower panels illustrate the case of
a large renewable capacity (KR > 2b), implying a negative correlation between prices and renewables.
The left panels consider the effects of increasing storage capacity (from the green dashed to the solid
line). The right panels consider the impact of increasing renewable capacity, which increases renewable
production (from the yellow dashed to the solid line) and reduces prices (from the green dashed to the
solid line).

These conclusions lead to our main Proposition, which characterizes the necessary
and sufficient condition for renewables and storage to be strategic substitutes: renewable

14



energies must correlate positively with prices, for which renewables must be procyclical
relative to demand and their capacity KR must not exceed a critical mass equal to 2b.14

Alternatively, renewables and storage are strategic complements.
Note that our definition for strategic complements (substitutes) is equivalent to the

standard one, ∂2Πi/∂Ki∂Kj > 0 (< 0), with a key difference. The standard definition
implicitly assumes that firms strategically choose capacities in a first stage. In contrast,
our model assumes that capacities are determined through the zero-profit condition,
making it relevant to assess the impact of capacity on profit levels, not marginal profits.

Proposition 1 Suppose there is a single renewable technology with capacity KR and α ∈
{−1, 1}. Let ΠS and ΠR denote the profits of storage and renewables. Renewables and
storage are strategic substitutes if and only if prices and renewables correlate positively,
i.e.,15

∂ΠR

∂KS

< 0 and ∂ΠS

∂KR

< 0 ⇔ α = 1 and KR < 2b.

Interestingly, since prices are increasing in β, more market power implies a greater
degree of complementarity or substitutability between renewables and storage, i.e., it
enlarges the magnitude of the derivatives ∂ΠS/∂KR and ∂ΠR/∂KS, but does not change
the sign of the correlation between prices and renewable energy availability.

Up to this point, we have abstracted from renewable energy curtailments. How-
ever, our framework can be used to explore the implications of relaxing this assumption
(Andrés-Cerezo and Fabra, 2023). Consider a scenario in which renewable generation is
sufficiently large to meet total demand, driving electricity prices to zero in some periods.
If storage operators are able to fully charge their capacity during these episodes at no
cost, then further increases in renewable capacity do not benefit them: charging prices
cannot fall below zero, while discharging into a market with more renewables becomes
less profitable for storage operators.

Similarly, expanding storage capacity to absorb otherwise-curtailed renewable energy
does not benefit renewable producers. Charging prices remain at zero during curtailment
events, and the additional storage capacity may exert downward pressure on prices when
renewable producers obtain positive prices. Thus, under curtailment conditions, the
strategic complementarity between renewables and storage weakens.

14This result is consistent with Butters et al. (2025)’s prediction that, for storage to break even in
the Californian market, renewable penetration must reach 50%.

15This result arises because all price-shaping effects in the model collapse into a single scalar channel,
i.e., the sign of b − αKR

2 . In more general setups (e.g., with non-sinusoidal demand/availability or
nonlinear supply responses), the two cross-derivatives need not move in tandem.
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Our baseline results extend naturally to the case of multiple renewable technologies,
with capacities denoted by K+ and K−. Technology + is procyclical (α+ = 1) and
technology − is countercyclical (α− = −1). Letting KR = K+

R + K−
R , the price equation

(5) now becomes

pNS(t) = 1
1 − β2

[(
θ − K+

R + K−
R

2

)
+
(

K+
R − K−

R

2 − b

)
sin t

]
.

In this case, the availability of one technology correlates positively with market prices,
while that of the other correlates negatively. If the technologies have the same capacity,
the correlation is positive for the procyclical technology and negative for the counter-
cyclical one. The signs are reversed only if the capacity of the procyclical technology
becomes much larger (by at least 2b).

Lemma 4 Equilibrium prices correlate positively with renewable technology + and neg-
atively with renewable technology − if and only if K+

R < K−
R + 2b.

The above result has important implications for the strategic complementarity or sub-
stitutability between renewables and storage. Importantly, unlike the single-technology
case, storage necessarily complements one renewable technology but substitutes for the
other.

Proposition 2 Suppose there are two renewable technologies, one with capacity K+
R and

α+ = 1 and the other one with capacity K−
R and α− = −1. Let i, j ∈ {+, −} and i ̸= j.

Renewable technology i and storage are strategic substitutes if and only if prices correlate
positively with their availability. Furthermore, if renewable technology i and storage are
strategic substitutes, renewable technology j and storage are strategic complements:

∂Π+
R

∂KS

< 0 and ∂Π−
R

∂KS

> 0,
∂ΠS

∂K+
R

< 0 and ∂ΠS

∂K−
R

> 0 ⇔ α = 1 and K+
R < K−

R + 2b.

4 The Impact of Mandates

We now analyze the impact of support schemes on long-run investment decisions. Recall
that we assume that regulators set technology mandates and introduce investment sub-
sidies that allow firms to break even. This can be achieved by the regulator procuring
the mandate through capacity auctions, as long as they are competitive.
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The expected profits of storage and renewable firms are:

ΠS(KS, KR, ηS) =
∫ 2π

0
p∗(t)

[
q∗

S(t) − q∗
B(t)

]
dt − CS(KS) + ηSKS

ΠR(KS, KR, ηR) =
∫ 2π

0
p∗(t)ω(t)KRdt − CR(KR) + ηRKR,

where ηS, ηR > 0 denote the investment subsidies for storage and renewables, respec-
tively.16 Throughout this section, we denote prices and dispatched production as p∗(t),
q∗(t) from Lemma 3.

The following proposition characterizes the effect of mandates on the break-even
subsidies:17

Proposition 3 Let K̄S and K̄R denote the technology mandates for storage and re-
newables and let η∗

S > 0 and η∗
R > 0 be implicitly defined by ΠS(K̄S, K̄R, η∗

S) = 0 and
ΠR(K̄S, K̄R, η∗

R) = 0. Then, for i, j ∈ {S, R} and i ̸= j, if the mandates are binding
(i.e., η∗

i > 0):
(i) A higher mandate K̄i for technology i requires a higher equilibrium subsidy for tech-
nology i, η∗

i , i.e.,
∂η∗

i

∂K̄i

> 0.

(ii) A higher mandate K̄i for technology i requires a higher equilibrium subsidy for tech-
nology j, η∗

j , if and only if prices and renewable energies correlate positively, i.e.,

∂η∗
j

∂K̄i

> 0 ⇔ α = 1 and K̄R < 2b.

Increasing a technology mandate increases its own investment break-even subsidy
because of a cannibalization effect. Whether this raises or reduces the subsidy required
to meet the other technology’s mandate depends on whether renewables and storage are
strategic complements or substitutes (Proposition 1). If they are strategic complements,
mandating more capacity for one technology comes with the additional benefit of reduc-

16We restrict ηS , ηR to be non-negative in order to focus on cases where policy instruments are de-
signed to promote new deployment of storage and renewable capacity. Allowing for negative values (i.e.,
taxes) would correspond to setting a storage mandate below the capacity that would arise in the absence
of any support, with the implied payment from storage firms to the regulator reducing investment to
the target level. This extension would not alter the comparative-statics logic in Propositions 3 and 4:
the sign of the cross-effects, and the threshold KR = 2b, would still determine whether support for one
technology raises or lowers the break-even support for the other.

17The Online Appendix B provides an alternative formulation of Proposition 3, expressed in terms
of subsidies instead of mandates.
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ing the break-even subsidy for the other. In contrast, if they are substitutes, increasing
the storage mandate acts as a barrier to deploying renewable energies, and vice versa. In
this case, a higher storage (renewables) mandate reduces the profitability of renewable
energies (storage), which in turn raises the break-even subsidy to meet the renewables
(storage) mandate. This result has important implications for the optimal timing of
technology mandates in markets where the correlation between renewables availability
and consumers’ demand is procyclical (i.e., α = 1), as we analyze next.

Accordingly, consider a regulator who chooses renewable and storage mandates to
minimize carbon emissions. Price-taking behavior minimizes generation costs and, with
constant per-unit capacity costs, the market solution also achieves the socially optimal
investment. Hence, the only market failure is the unpriced emissions externality.

The regulator can allocate investment subsidies to allow firms to break even up to
a limited budget B. Since emissions depend on the amount of thermal production, we
denote emissions as e

(
q(t)

)
and assume e′

(
q(t)

)
> 0, e′′

(
q(t)

)
> 0, reflecting the fact

that higher marginal cost plants typically have higher emissions (Borenstein and Kellogg,
2023). To simplify the analysis, but w.l.o.g., we also assume e′′′

(
q(t)

)
≤ 0.

Denoting overall emissions as a function of mandates as Φ
(
K̄S, K̄R

)
, the regulator’s

problem can be written as:

min
K̄S ,K̄R

Φ
(
K̄S, K̄R

)
≡
∫ 2π

0
e
(
q∗(t))dt

s.t. η∗
S(K̄S, K̄R)K̄S + η∗

R(K̄S, K̄R)K̄R ≤ B,

where q∗(t) is defined in Lemma 3 and η∗
S > 0 and η∗

R > 0 are implicitly defined by the
break-even constraints, ΠS(K̄S, K̄R, η∗

S) = 0 and ΠR(K̄S, K̄R, η∗
R) = 0.

Increasing renewable capacity reduces emissions by replacing thermal production, es-
pecially when renewable availability is high. However, due to the convexity of emissions,
the marginal reduction in emissions decreases as renewable capacity increases. Investing
in storage capacity also reduces emissions, as the increase in emissions during charging
is more than offset by the decrease during discharging. The marginal reduction in emis-
sions decreases with additional storage capacity until storage capacity becomes large
enough to flatten thermal production entirely. Beyond that point, additional storage
capacity becomes idle and no longer reduces emissions.

The following proposition characterizes the regulator’s choice of optimal mandates
K̄∗

S and K̄∗
R when the budget is large enough.
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Proposition 4 Let α = 1 and denote by B̄ the minimum budget level that allows the
regulator to mandate K̄R ≥ 2b. Then, if B ≥ B̄, renewable energies and storage are
strategic complements at the optimal mandates, i.e., K̄∗

R ≥ 2b. Moreover, if the mandates
are binding (i.e., η∗

i > 0),
∂2Φ

∂K̄S∂K̄R

< 0 ⇔ K̄R > 2b.

This proposition implies that it can never be optimal to set a mandate K̄R < 2b if
the regulator has the financial means to reach that threshold. When KR ≤ 2b, both
technologies contribute to reducing overall emissions by flattening thermal production
across periods. Emissions are fully flattened with any combination of K̄R ∈ [0, 2b]
and K̄S = 2|b − K̄R/2|. Flattening thermal production through renewables has the
additional benefit of reducing emissions in every period, not just when storage discharges.
Therefore, mandating K̄R < 2b is dominated by K̄R ≥ 2b when the regulator’s budget
is enough to compensate renewable producers to break even at that target.

Once the critical threshold KR = 2b is surpassed, the strategic complementarity be-
tween storage and renewable investments encourages storage to enter the market (Propo-
sition 1). Moreover, the regulator may find it optimal to set a mandate K̄S above the
investment level KS that would enter without investment subsidies. This results from a
double complementarity: one through an emissions effect (Proposition 4) and the other
through a subsidy effect (Proposition 3). Increasing renewable capacity above the critical
mass 2b reduces emissions in every period while amplifying emissions differences across
periods. This boosts the social value of storage capacity, as it flattens emissions across
time, reducing total emissions due to the convexity of the emissions function (emissions
effect). Additionally, new renewable capacity amplifies price differences across periods,
increasing arbitrage profits and thus reducing the storage break-even subsidy. Storage
entry raises prices when renewable availability is high, reducing the break-even renewable
subsidy (subsidy effect). Overall, these complementarities make it optimal to combine
both technology mandates.

In contrast, when the critical threshold KR = 2b cannot be reached, the emissions
and subsidy effects are reversed. On the one hand, increasing the capacity of one of the
two technologies reduces the social value of the other, as both contribute to flattening
emissions differences across periods (Proposition 4). On the other hand, increasing the
amount of one technology raises the per-unit investment subsidy that allows the other
technology to break even (Proposition 3). Together, this double substitutability implies
that mandating both technologies is often undesirable when the regulator does not have
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the means to reach the renewable threshold KR = 2b.18

5 Extensions

In this section, we extend the model in two key directions: incorporating market power
in storage and introducing transmission constraints. Regarding market power in storage,
we show that while the fundamental condition for complementarity between renewable
energy and storage remains unchanged, the presence of market power leads to under-
investment. This underinvestment, in turn, influences the level of subsidies required to
achieve a given renewable deployment target.

Transmission congestion, on the other hand, alters the interaction between storage
and renewables in different ways depending on storage location. If storage assets are
situated close to demand centers, congestion can weaken or even eliminate the link
between storage and renewable generation, as storage decisions are driven primarily
by local price dynamics rather than system-wide renewable availability. Conversely, if
storage is co-located with renewable plants, congestion can enhance complementarity
by ensuring that market prices respond primarily to fluctuations in renewable output.
In this case, storage owners consistently charge when renewables are abundant and
discharge when they are scarce, reinforcing the economic alignment between the two
technologies.

5.1 Market Power in Storage

Consider the case where the storage assets are owned by a storage monopolist. To isolate
the effect of market power in storage from the effect of market power in generation, we
assume that all thermal generators behave competitively (i.e., β = 0). The key difference
with the case of competitive storage is that the storage monopolist internalizes the price
impacts of its charging and discharging decisions. Therefore, the problem of the storage

18Our baseline convexity assumption, i.e., that e′′(q) > 0, implies that higher-marginal-cost plants
(e.g., coal) emit more per MWh than lower-cost plants (e.g., gas), a ranking broadly observed in
electricity markets in Europe and the US. Instead, if emissions are concave (e′′(q) < 0), then once
solar capacity is large enough, adding storage undoes the emissions reduction delivered by abundant
renewables and increases total CO2. In that case, an emissions-focused planner would allocate its entire
budget to renewables (at least until the dirtiest units are displaced) before subsidizing any storage.
Importantly, the key result that only renewables should be subsidized at early stages remains unaffected.
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firm for given storage capacity is:

max
qB(t),qS(t)

∫ 2π

0

[
D(t) − ω(t)KR − qS(t) + qB(t)

][
qS(t) − qB(t)

]
dt

subject to storage constraints (7) and (8). The following lemma characterizes storage

decisions of the storage monopolist and equilibrium market prices:

Lemma 5 The equilibrium strategy of the storage monopolist is characterized as follows:

(i) It charges a quantity qM
B (t) during all periods t ∈ [tM

B , t
M
B ], corresponding to the

lowest prices in the absence of storage. The quantities qM
B (t) are such that its

marginal expenditure is fully flattened across these periods, and storage is fully
charged by period t

M
B .

(ii) It discharges a quantity qM
S (t) during all periods t ∈ [tM

S , t
M
S ], corresponding to

the highest prices in the absence of storage. The quantities qM
S (t) are such that

its marginal revenue is fully flattened across these periods, and storage is fully
depleted by period t

M
S .

(iii) It remains inactive in all other periods, implying p∗(t) = pNS(t).

This result is the analogue of Lemma 3. As in the case of competitive storage,
the storage monopolist also purchases electricity when prices are low to resell it when
prices are high. However, unlike competitive operators, the storage monopolist does not
equalize prices across the periods in which it is active. Rather, it equalizes marginal
revenue when it sells (or marginal expenditure when it buys). The reason is that the
monopolist internalizes the price impact of its marginal decisions on the prices it pays
or receives for its inframarginal charging or discharging. Consequently, it behaves like a
monopsonist when charging – buying less than a competitive operator would in order to
limit upward pressure on prices. Similarly, it behaves like a monopolist when discharging
– selling less than a competitive operator would to avoid depressing prices.

Since it is optimal for the monopolist to fully utilize its storage capacity, for a given
capacity level KS, the storage monopolist must be active over a greater number of periods
than a competitive storage firm in order to fill or empty its storage.19

19This also implies that the level of storage capacity at which the capacity constraint becomes non-
binding is lower under monopoly. See Andrés-Cerezo and Fabra (2023) for further discussion on the
behavior of storage monopolists and the resulting inefficiencies.
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Although the resulting time path of market prices differs from that under competi-
tive storage, the correlation between prices and renewable production is unaffected by
whether storage is operated competitively or strategically. As a result, the condition
determining whether storage and renewables are complements remains unchanged, as
formalized in the following proposition:

Proposition 5 Let ΠM
S and ΠM

R denote the profits of storage and renewables when stor-
age assets are owned by a storage monopolist. Renewables and storage are substitutes if
and only if prices and renewables correlate positively, i.e.,

∂ΠM
R

∂KS

< 0 and ∂ΠM
S

∂KR

< 0 ⇔ α = 1 and KR < 2b.

As in the baseline model, the central force driving the complementarity between
storage and renewables is the correlation between equilibrium electricity prices and re-
newable generation. Crucially, this correlation is not influenced by the behavior of the
storage operators; rather, it depends solely on the time pattern of renewable production
and the scale of renewable capacity.

Consistent with the baseline model, when α = −1, the correlation is negative. In
contrast, when α = 1, the correlation is positive at low levels of renewable capacity,
indicating that storage firms tend to charge when renewable availability is low. In both
the competitive and strategic storage settings, this correlation reverses to negative only
once renewable capacity surpasses the same threshold, specifically when KR ≥ 2b.

Although strategic storage behavior does not alter the conditions under which storage
and renewable technologies complement each other, it does affect long-run capacity
investments. The following lemma shows that, for any given renewable capacity mandate
K̄R, the storage monopolist under-invests with respect to the competitive case. To isolate
the effect of market power on investment, we assume linear investment costs in storage
i.e., CS(KS) = cSKS, with cS > 0.20

Lemma 6 Let KC
S and KM

S denote equilibrium storage capacity investment for a given
renewable mandate K̄R when storage firms are competitive and strategic, respectively.
Then:

KM
S (K̄R) < KC

S (K̄R), ∀K̄R.
20Free-entry implies that competitive firms invest in storage capacity up to the level at which the

marginal value of storage equals average investment cost, whereas the storage monopolist invests until
the marginal value of storage equals the marginal investment cost. If investments costs are strictly
convex, average costs are below marginal costs, giving rise to larger investment differences between the
competitive and monopoly cases.
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The tendency of the storage monopolist to smooth storage operations in order to
limit price impacts diminishes the marginal gains from intertemporal arbitrage. As a
result, investment in storage is inefficiently low relative to the competitive benchmark,
irrespective of the level of the renewable mandate K̄R.

Figure 3: Price impact of competitive and monopoly storage

t

D(t)
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Notes: These figures depict demand (black) and production of renewable energies (yellow) over time.
The green line captures prices when storage facilities are not active in the market. The solid (dashed)
blue line depicts prices in periods when competitive (monopoly) storage firms are active. The left
panel illustrates the case of procyclical renewables (α = 1) and small renewable capacity (KR < 2b),
implying a positive correlation between prices and renewables. The right panel illustrates the case of
procyclical renewables (α = 1) and large renewable capacity (KR > 2b), implying a negative correlation
between prices and renewables. Both figures consider equilibrium capacity investment by competitive
and storage firms, so that KM

S < KC
S (as shown by the different sizes of the shaded areas).

The resulting under-investment arising from market power in storage weakens the
positive feedback loop between storage and renewables when the two technologies are
strategic complements, whereas it reinforces the negative feedback loop when the two
technologies are substitutes. An important implication of this is that the break-even sub-
sidy required to achieve a renewable mandate differs across different market structures,
as shown by the following proposition:

Lemma 7 Let K̄R denote a renewable mandate and ηC
R and ηM

R the per-unit invest-
ment subsidies that allow renewable firms to break even when storage is competitive and
strategic, respectively. Then:

ηC
R(KC

S , K̄R) > ηM
R (KM

S , K̄R) ⇔ α = 1 and K̄R < 2b.

When prices and renewable production are positively correlated, the per-unit invest-
ment subsidy required to achieve a renewable technology mandate is lower when storage
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assets are owned by a monopolist. In contrast, in markets where renewables and prices
are negatively correlated, having market power in the storage segment increases the cost
of achieving the renewable mandate.

Overall, the effects of market power in storage vary depending on whether renewable
generation is countercyclical or procyclical with respect to demand. In markets where
renewables are countercyclical, regulators should consistently seek to promote compe-
tition in the storage segment, as greater competition leads to higher levels of storage
investment, which in turn stimulates investment in renewable capacity.

In contrast, when renewables are procyclical, market power in storage introduces
productive inefficiencies but may inadvertently facilitate the achievement of the critical
capacity threshold KR = 2b, precisely because it suppresses storage investment. Once
this threshold is surpassed, however, regulatory efforts should focus on curbing stor-
age market power in order to enhance both storage deployment and renewable energy
investment.

5.2 Transmission Constraints

In this section, we show that, in the presence of transmission constraints, storage and
renewable energy can function as strategic complements – even when renewable gener-
ation is procyclical and its available capacity is limited. However, this complementarity
hinges critically on the geographic location of storage and renewable assets. This is be-
cause local transmission congestion can amplify the price effects of renewable generation,
thereby altering the incentives of storage operators.

To simplify the exposition and isolate the mechanisms at play, we assume a setting
with no market power in either generation (i.e., β = 0) or storage. Let us assume
that final consumers and renewable generation assets are located in two different areas
(nodes) that are linked by a lossless transmission line with capacity T . This reflects the
fact that, in many real-world examples, renewable energy resources tend to be located
far away from large demand centers.21 More concretely, we assume that all demand
D(t) is located in region E. In contrast, all renewable capacity is located in region W .
Demand and renewable availability expressions are as in the baseline model.

21For example, Australia has vast wind and solar resources in remote regions, such as the deserts of
Western Australia and South Australia. Brazil’s Northeast is rich in wind and solar potential, whereas
major demand centers are in the southeastern cities of São Paulo and Rio de Janeiro. The Atacama
Desert in northern Chile has some of the best solar resources in the world, while most of Chile’s
population and industry is located in the central and southern regions.
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For comparability purposes, we assume KR < T , which rules out renewable energy
curtailment for sufficiently large consumers’ demand. In both regions, E and W , there
are competitive thermal generators with quadratic production costs.22

We first examine price determination in the absence of storage. When there are
no transmission constraints (i.e., for a sufficiently large transmission capacity, T ), the
equilibrium price at time t is equal for both regions and identical to the one in the baseline
model. In particular, renewables always produce at full capacity (due to zero marginal
costs), so thermal generators serve the residual demand, D(t) − ω(t)KR. Since these
generators behave competitively and their marginal costs are linear, the supply curve of
each is given by qi

(
p(t)

)
= p(t)/2. Therefore, using the market clearing condition, the

unique market equilibrium price in the absence of storage is as in the baseline model
(with competitive generation):

pNS(t) = D(t) − ω(t)KR. (9)

With no transmission constraints, renewable energy flows from region W to region E in
every period t. The remaining demand from consumers in region E is equally met by
thermal production in both regions, which minimizes generation costs. Hence, introduc-
ing storage in this market would have the same effect as in the baseline model. Moreover,
the outcome is independent of the location of storage assets since the transmission line
is uncongested.

We now examine the scenario where a smaller T leads to transmission congestion in
period t. In this scenario, generation costs cannot be minimized. Specifically, there must
be more thermal generation in region E than in W , even though producers in region
W could produce at lower costs. In particular, thermal generators in region W produce
until the line is congested, i.e., qW (t) = T −ω(t)KR, and generators in region E produce
the remaining energy required to satisfy demand, i.e., qE(t) = D(t) − T .

Market clearing in each node implies that the price is given by the marginal cost of
thermal generators, which, given our assumptions, is equal to 2qi(t), for i = {E, W}.
Therefore, the two markets clear at different (nodal) prices, pE(t) and pW (t):

pE(t) = 2
[
D(t) − T

]
. (10)

pW (t) = 2
[
T − ω(t)KR

]
. (11)

22This implies that the industry supply curve in the absence of transmission constraints is the same
as in the baseline model (when there is no market power in generation).
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In what follows, we consider two cases where storage capacity KS is located in either
region E or W . We focus on situations where the transmission line is congested in every
period.23

Storage close to renewable plants We start by considering the case of storage
assets that are co-located with renewable production in region W , so that only prices in
region W are affected by storage decisions. Adding storage to equation (11):

pW (t) = 2
[
T − ω(t)KR + qB(t) − qS(t)

]
. (12)

From equation (12), it follows that when the transmission line is congested, the corre-
lation between renewable generation, ω(t)KR, and the price it receives, pW (t), is always
negative – even when renewables are procyclical and their capacity is small. This arises
because congestion mutes the demand movements, effectively capping demand at T . As
a result, price fluctuations across periods are entirely driven by variations in renewable
output rather than changes in market demand.

Storage firms buy (sell) when prices in region W are low (high).24 Hence, storage
pushes prices up (down) when renewables are abundant (scarce), thus implying that
renewables and storage located in the same node are always strategic complements in
the presence of binding transmission constraints.

This outcome contrasts with the case of an unconstrained transmission network, as in
equation (5), where prices depend not only on renewable production but also on demand
dynamics. Without congestion, the price effects of renewable fluctuations may not be
strong enough to fully offset demand-driven price movements, potentially leading to a
positive correlation between renewables and the prices they capture.

Proposition 6 For sufficiently small T so that the transmission constraint is always
binding, renewables and storage are always strategic complements.

23For this, we require T < [D(t) + ω(t)KR]/2 for all t. We make this assumption for expositional
purposes, but it is not crucial for the results as long as transmission capacity is sufficiently small. The
key driver behind the results is the fact that, in the presence of congestion, nodal prices in region W are
heavily driven by renewable output. Allowing for congestion in some periods and not in others would
capture intermediate cases between the one presented here and the baseline model with no transmission
constraints.

24Lemma 8 in the Appendix characterizes equilibrium storage decisions in the presence of transmission
constraints. The key difference with Lemma 3 is that, in this case, storage always charges (discharges)
at times when renewables are abundant (scarce) even when their availability is procyclical.
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Storage close to demand We now consider the case where storage is located in region
E, close to consumers but far from renewable energies. Adding storage to equation (10):

pE(t) = 2
[
D(t) − T + qB(t) − qS(t)

]
. (13)

It follows that storage no longer affects the profits of renewable energies, as the additional
demand or supply created by charging or discharging decisions does not affect prices in
region W . Hence, the profits of storage and renewable energies are independent of each
other.

Overall, the core logic of the baseline model continues to apply. However, it must be
interpreted with greater nuance in the presence of transmission constraints. Importantly,
even in markets with low aggregate solar penetration, storage and renewables can act
as strategic complements – provided that both are located within a congested region.
This underscores the importance of accounting for spatial heterogeneity when designing
policies to coordinate investment in renewables and storage.

6 Simulations of the Spanish Electricity Market

We illustrate our main theoretical findings on the strategic complementarity and substi-
tutability of renewable energies and storage through simulations of the Spanish electricity
market.25 We conduct a series of simulations to determine equilibrium outcomes on an
hourly basis over a year (8,760 hours) under two scenarios: low renewable penetration
(2019) and high renewable penetration (2030). The simulations are richer than the the-
oretical model, in the sense that demand and marginal costs are based on actual hourly
and plant-level values, respectively, rather than being constrained to functional forms.26

We utilize highly detailed data on key parameters, including technology character-
istics (capacity, efficiency rate, emission rate), hourly electricity demand (which is as-
sumed to be price inelastic), hourly availability of renewable resources, and daily fossil
fuel prices, among other factors.27 This information allows us to calculate the marginal

25The simulations report equilibrium prices for given generation and storage capacities. Yet, they
shed light on the profitability of the investments.

26To simplify the analysis, in the simulations we assume away trade with neighboring countries as
this would require the endogenous modeling of prices across the two borders.

27Hourly demand data, renewable availability, and installed capacity for each technology are publicly
available on the Spanish System Operator’s website, (Redeia, 2025). Plant characteristics are obtained
from (Global Energy Monitor, 2025). Fossil-fuel prices and CO2 EU allowance prices are available at
(Bloomberg, 2025).
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cost for each plant.28 For renewable generation, marginal costs are assumed to be equal
to operation and maintenance (O&M) costs. Instead, for a thermal plant i, marginal
costs also depend on fossil fuel prices as follows:

ci = pf

ei

+ τϵi + omi

where pf denotes the fossil-fuel price (either gas, coal, nuclear), ei is the plant’s efficiency
in converting fuel into electricity, τ is the CO2 price, ϵi is the plant’s carbon emission
rate (which in turn depends on the fuel it uses and its efficiency), and omi stands for its
O&M cost. This enables us to construct the industry’s competitive supply curve on an
hourly basis, given the variable availability of renewable energies.29

To compute equilibrium market outcomes under strategic bidding, our simulation
framework closely replicates the theoretical model presented in Section 2. Specifically,
we assume that a single firm controls 25% of all production plants across all technologies,
including renewable energies. The remaining 75%, along with the entire storage capacity,
is operated by competitive firms.30 These competitive firms supply output at marginal
cost, while the dominant firm meets the residual demand at its profit-maximizing price.31

Since demand is assumed price inelastic, we need to choose a value for the implicit
market price cap, which might be binding at times when the dominant firm is pivotal,
i.e., typically, at times of peak demand and low renewable availability. We set the price
cap equal to 500 €/MWh.32

To assess the model’s performance, we have run simulations using 2019 actual market
data. Figure 4 shows the simulated electricity prices in the Spanish electricity market
and compares them with the observed prices. The average hourly simulated prices are
49.2 €/MWh and 50.5 €/MWh under competitive and strategic bidding,33 respectively.

28The calculation follows established methods in the literature; see, for instance, Fabra and Imelda
(2023).

29This curve minimizes total production costs, so that if generation from a given plant is positive,
then any plant with a lower variable cost must be producing at available capacity.

30Varying the parameter β alters the extent of market power the dominant firm can exert, but does
not affect the qualitative nature of the results.

31Further details on the simulations can be found in the Online Appendix C. This appendix also
reports the main results under the assumption of competitive behavior by all firms.

32As with the β parameter, changing the value of the price cap influences price levels by altering the
degree of market power, but does not affect the qualitative nature of the results. This is illustrated in
the Online Appendix, which presents the outcomes for a scenario with a 1,000 €/MWh price cap.

33The simulation under strategic bidding, like the rest of the simulations, assumes that a dominant
firm controls 25% of total generation capacity. The discrepancy between observed and simulated prices
under this assumption may be explained by the fact that this market structure does not fully reflect
the actual one in the Spanish market.
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By comparison, the actual average price was slightly lower, at 48.6 €/MWh. The cor-
relation between actual and simulated daily average prices is 0.914 under competitive
bidding and 0.859 under strategic bidding. This strong alignment between simulated
and observed outcomes supports the model’s suitability for conducting counterfactual
analyses.34

Figure 4: Real versus simulated electricity prices, 2019
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Notes: This figure shows the simulated (solid) and real (dash) daily averages of hourly prices in the
Spanish electricity market as of 2019. The solid light blue line assumes competitive bidding, while the
solid dark blue line assumes strategic bidding with a dominant firm owning 25% of generation capacity.

Scenarios. We consider scenarios with low and high renewable capacity penetration
and different levels of storage capacity. These scenarios are meant to replicate the
Spanish market as of 2019 and 2030, as contemplated by the Spanish Government in
its National Energy and Climate Plan. Table 1 details the technological structure used
under the scenarios with low and high renewables. Between 2019 and 2030, solar capacity
is projected to grow nearly tenfold – from 8.3 GW to 76.3 GW – while wind capacity
is expected to more than double, rising from 25.6 GW to 62.0 GW. As a result, the
combined share of solar and wind in total generation capacity increases substantially,
from 43.4% to 82.3%. The additional renewable plants are assumed to operate under

34The model fails at fully capturing the within-day price variation, an issue that is well documented
in perfect competition models unless ramping costs are incorporated (Reynolds, 2024).
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the same availability factors as in 2019.
Over the same period 2019-2030, the energy transition is also expected to involve a

partial phase-out of nuclear power, with capacity declining from 7.4 GW to 3.2 GW, a
complete phase-out of coal-fired power plants, and a 37% increase in electricity demand.

For each of these two scenarios, we consider different amounts of batteries with
a 4-hour duration and 90% round-trip efficiency, corresponding to the most common
type (NREL, 2022). This means that it takes four hours to fully charge/discharge a
battery with a capacity equal to 4 GWh and power equal to 1 GW. Battery operators
are assumed to have perfect foresight and to perform price arbitrage within a given
natural day, subject to charge/discharge constraints and to available capacity. For each
renewable scenario, we consider different levels of storage capacity, ranging from 4 GWh
to 40 GWh.

Table 1: Installed capacity by technology and peak demand

Low RES High RES

Capacity % of total Capacity % of total
(GW) capacity (GW) capacity

Solar capacity 8.306 10.6 76.278 45.4
Wind capacity 25.584 32.8 62.054 36.9
Nuclear capacity 7.400 9.5 3.182 1.9
Coal capacity 10.160 13.0 0 0
CCGT capacity 26.612 34.1 26.612 15.8

Total capacity 78.062 100 168.126 100
Peak demand 40.150 – 55.268 –

Notes: This table reports the capacity (in GW and shares) of the different
generation technologies in the Spanish electricity market. The 2019 values
correspond to actual data, while the 2030 projections are based on the targets
outlined in Spain’s National Energy and Climate Plan (PNIEC).

Results. Figures 4 to 7 and Table 2 present the main results of our simulations. The
upper panels in Figure 4 display the average market prices over the day in 2019 (left
panel) and 2030 (right panel). Prices in 2019 are nearly flat and unaffected by the
presence of storage facilities. Hence, when renewable capacity is low, adding storage
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Figure 5: Equilibrium prices, renewables, and storage (with market power)
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barely impacts the profitability of renewables or storage.35 By contrast, in 2030, prices
fluctuate significantly throughout the day, reaching lower levels during midday hours.
Increasing storage capacity from 4 GWh to 40 GWh raises midday prices and lowers
peak prices.

The middle panels of Figure 4 show wind and solar production for 2019 and 2030.
Solar generation peaks around midday, when prices in 2030 are lowest, while wind pro-
duction is relatively higher at night, when 2030 prices tend to be higher.

Finally, the lower panels of Figure 4 depict the charging and discharging behavior
of storage facilities. In 2019, charging typically occurs at night, displaying a negative
correlation with solar output and a positive one with wind. However, the utilization
of storage is limited due to the small intra-day price differentials. In 2030, charging
shifts to midday – reversing the correlation pattern with solar and wind – and the
storage utilization rate increases markedly, as facilities can now profit from greater price
variability. Similar evidence is reported in Figure 6, showing an increase in storage
utilization (left panel) and arbitrage profits (right panel).

In 2030, the increase in storage utilization leads to a rise in solar profits. This is
mainly driven by storage facilities charging relatively more during periods of high solar
output, effectively supporting higher average prices during those hours. Conversely, the
expansion of storage capacity reduces wind profits, as batteries typically discharge at
night, exerting downward pressure on prices when wind generation is relatively abundant.
While storage helps to reduce wind curtailment (Table 2), the effect is comparatively
modest relative to the price effect.

Figure 7 provides further details on the effects of increasing renewable and storage
capacities on the prices captured by both assets. In the low renewables scenario (left
panels), increasing storage capacity has little effect on the prices captured by solar and
wind, which remain close to 50 €/MWh. In contrast, under the high renewables scenario
(right panels), captured prices for solar decline markedly due to the cannibalization
effect. Meanwhile, captured prices for wind increase, as the phase-out of coal and nuclear
power, combined with rising electricity demand, enhances market power during hours
when wind generation is relatively abundant.

Expanding storage capacity from 4 GWh to 40 GWh raises the captured price for
solar by 16% (from 35.4 to 41.2 €/MWh), while it lowers the captured price for wind by
14% (from 96.5 to 83.0 €/MWh). Thus, greater storage capacity benefits the technology

35Carson and Novan (2013) obtain a similar finding for the Texas market at a time when only 8% of
total output came from renewables.
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whose production is positively correlated with prices (i.e., solar), and adversely affects
the one with a negative correlation (i.e., wind).

Figure 6: Capacity factors and profits of energy storage (with market power)
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Notes: This figure shows the capacity factor (left panel) and profits (right panel) of energy storage as
a function of the installed storage capacity. The capacity factor is computed as the ratio between the
supply of energy storage over the maximum supply it could have if it charged and discharged its full
capacity (corrected by the round-trip efficiency) every four hours. Profits are computed as the difference
between the revenues from discharging minus the costs of charging over storage capacity in MW. The
dark blue dashed lines correspond to the 2019 scenario (low renewables), and the light blue dashed lines
correspond to the 2030 scenario (high renewables). The cost and performance of battery systems are
typically based on an assumption of approximately one cycle per day. Therefore, a 4-hour battery is
expected to have a capacity factor of 16.7% (4/24 = 0.167). Higher (lower) values imply that there is
more (less) than one cycle per day (NREL, 2022).

The lower panels of Figure 7 also reveal that, as expected, storage discharges at
higher prices than when it charges. It also shows that the arbitrage profit is significantly
larger in the high renewables scenario. Moreover, as more storage capacity is added, the
cannibalization effect becomes stronger in the high renewables scenario.

Table 2 provides results on the main market outcomes in the scenarios with and with-
out market power. When the market is perfectly competitive, the simulations uncover
that (absent investment costs) storage unambiguously improves welfare. Increasing stor-
age capacity reduces generation costs and carbon emissions while avoiding renewables
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curtailment, especially in the high renewables scenario. Increasing storage also benefits
consumers by lowering market prices, especially in the high renewables scenario.

While most of these benefits persist even in the presence of market power, some may
be reversed. For instance, firms with market power might strategically withhold solar
and wind output (Fabra and Llobet, 2025), and these incentives can intensify as storage
capacity increases. This behavior becomes evident as storage expands to 20 GWh in the
low renewables scenario, or from 20 to 40 GWh in the high renewables scenario.

Moreover, consistent with the findings of Liski and Vehviläinen (2025), storage ex-
pansion does not always lead to lower consumer prices. In the high renewable energy
scenario, increasing storage capacity from 20 to 40 GWh results in higher prices. This is
again attributed to the exercise of market power, which makes the price-reducing effect
of discharging be dominated by the price-increasing effect of charging. While these nega-
tive effects are economically modest, they underscore a critical insight: storage enhances
market efficiency primarily when the market is competitive.

Figure 7: Captured prices by renewables and storage
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Table 2: Market outcomes under No Market Power and Market Power scenarios
No Market Power Market Power

No Storage 20 GWh 40 GWh No Storage 20 GWh 40 GWh
Low Renewables (2019)

Average price (€/MWh) 49.182 49.218 49.217 50.535 50.535 50.535
Generation cost (€/MWh) 18.145 18.105 18.103 18.176 18.175 18.175
CO2 emissions (Ton/MWh) 0.09979 0.09923 0.09921 0.09951 0.09950 0.09950
Excess solar (MWh/MW) 0.000 0.000 0.000 0.0111 0.0112 0.0112
Excess wind (MWh/MW) 2.0227 0.4116 0.000 11.458 10.694 10.674

High Renewables (2030)

Average price (€/MWh) 32.539 32.346 31.925 122.245 113.971 116.161
Generation cost (€/MWh) 16.256 15.357 14.654 17.862 17.353 17.260
CO2 emissions (Ton/MWh) 0.06897 0.06223 0.05694 0.07759 0.07353 0.07265
Excess solar (MWh/MW) 88.029 55.006 34.411 154.078 136.907 144.594
Excess wind (MWh/MW) 528.320 482.883 436.871 519.973 480.566 449.284

Notes: This table compares the main simulation results with and without market power. The former
assumes that there is one dominant firm owning 25% of the generation capacity. Each scenario is simu-
lated under three storage levels (no storage, 20 GWh, and 40 GWh) and the two renewable penetration
scenarios (Low: 2019; High: 2030).

7 Conclusion

This paper identifies the conditions under which renewables and storage are either strate-
gic complements or substitutes. Specifically, we find that storage investments tend to
crowd out renewable investments, and vice versa, when the availability of renewables is
positively correlated with market prices. Conversely, when the correlation is negative,
renewables and storage complement each other.

Our analysis offers novel insights into the strategic interactions between storage and
renewable energy investments. It challenges conventional wisdom by demonstrating that
these technologies can be strategic substitutes, particularly in the early stages of renew-
able deployment or in markets with multiple renewable technologies. Understanding the
strategic complementarity or substitutability between renewables and storage is crucial
for determining the optimal support policies, ensuring an efficient promotion of both
technologies without unintended negative interactions.

Our model assumes deterministic demand and renewable generation. This simplifica-
tion allows for a clear characterization of the behavior of storage while isolating the main
deterministic drivers of price dynamics. An open question, however, is whether intro-
ducing stochastic elements would alter the degree of complementarity or substitutability
between renewables and storage.
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Intuitively, price uncertainty may lead storage operators to reserve part of their
capacity to exploit unforeseen price movements, i.e., charging at unexpectedly low prices
or discharging at high ones. This behavior reduces the effective capacity used to arbitrage
predictable price cycles. Nonetheless, it should not fundamentally change the nature
of the relationship between renewables and storage, which hinges on the sign of the
correlation between prices and renewable output. That correlation is driven by the level
of renewable capacity, not by the amount of storage. Verifying this intuition would
require a model with stochastic components linked to renewable variability – an avenue
we leave for future research.

In sum, whether renewables and storage strategically complement or substitute each
other may vary from one market to another, across technologies, and over time. Poli-
cies to promote investments in renewables and storage should evolve accordingly. Our
findings suggest that a significant initial push for investments in solar energy is neces-
sary to trigger the strategic complementarity with energy storage, after which further
deployment of both technologies can reinforce each other in a virtuous manner.
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Appendix

A Proofs

Proof of Lemma 1

The problem of the competitive fringe is:

max
qF (t)

πF =
∫ 2π

0

(
p
(
t; qD(t)

)
qF (t) − q2

F (t)
2(1 − β)

)
dt.

The first-order condition, which is both necessary and sufficient, is:

p
(
t; qD(t)

)
− qF (t)

1 − β
= 0 ⇔ qF (t) = (1 − β)p

(
t; qD(t)

)
, ∀t.

The dominant producer chooses its output in order to maximize its profits over the
inverse residual demand. That is:

max
qD(t)

πD =
∫ 2π

0

(
p
(
t; qD(t)

)
qD(t) − q2

D(t)
2β

)
dt

=
∫ 2π

0

(
ND(t, KR) − qD(t)

1 − β
qD(t) − q2

D(t)
2β

)
dt.
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Hence, the first-order condition of the problem is:

∂πD

∂qD (t) = 0 ⇔ ND(t, KR) − 2qD(t)
1 − β

− qD(t)
β

= 0

⇔ qD(t) = β

1 + β
ND(t, KR), ∀t,

with the second-order condition satisfied. Note that the above implies:

qF (t) = ND(t, KR)
1 + β

, ∀t.

Therefore, equilibrium market prices in the absence of storage are:

pNS(t) = ND(t, KR)
1 − β2 = 1

1 − β2

[(
θ − KR

2

)
−
(

b − α
KR

2

)
sin t

]
, ∀t.

These definitions will be used throughout the Appendix.

Proof of Lemma 3

Let us re-state Lemma 3 formally as follows, where to ease notation, we have defined

A(KR) ≡ θ − KR

2 ,

ρ(KR) ≡ b − α
KR

2 ·

Lemma 3 (bis) Let charging
(
t ∈ [tB, tB]

)
and discharging

(
t ∈ [tS, tS]

)
periods be

defined by

{tB, tB, tS, tS} =
 {τ ; π − τ ; π + τ ; 2π − τ} if ρ(KR) ≥ 0

{π + τ ; 2π − τ ; τ ; π − τ} if ρ(KR) < 0

where τ ∈ [0, π/2) is implicitly defined by

cos τ − (π/2 − τ) sin τ = KS/|2ρ(KR)|, (A.1)

for KS ∈ [0, |2ρ(KR)|], and τ = 0 otherwise.

(i) Equilibrium storage decisions can be characterized as:
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For charging periods t ∈ [tB, tB] ,

q∗
B(t) =

 ρ(KR)
[

sin t − sin τ
]

if ρ(KR) ≥ 0
ρ(KR)

[
sin t + sin τ

]
if ρ(KR) < 0

,

and q∗
B (t) = 0 for all other t.

For discharging periods t ∈ [tS, tS],

q∗
S(t) =

 ρ(KR)
[

− sin t − sin τ
]

if ρ(KR) ≥ 0
ρ(KR)

[
− sin t + sin τ

]
if ρ(KR) < 0

,

and q∗
S (t) = 0 for all other t.

(ii) Equilibrium market prices are given by:

p∗(t) =



(
A(KR) − ρ(KR) sin τ

)/
(1 − β2) if τ ≤ t ≤ π − τ(

A(KR) + ρ(KR) sin τ
)/

(1 − β2) if π + τ ≤ t ≤ 2π − τ(
A(KR) − ρ(KR) sin t

)/
(1 − β2) otherwise

. (A.2)

To prove the lemma, suppose that storage firms choose {qS(t), qB(t)}t∈[0,2π] to maximize
profits:

max
qS(t),qB(t)

ΠS

(
qS(t), qB(t)

)
=
∫ 2π

0
p(t)

[
qS(t) − qB(t)

]
dt

s.t. h1
(
qS(t), qB(t)

)
=
∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt ≥ 0

h2
(
qB(t)

)
= KS −

∫ 2π

0
qB(t)dt ≥ 0

h3
(
qS(t)

)
= qS(t) ≥ 0

h4
(
qB(t)

)
= qB(t) ≥ 0,

The constraint set is convex, and the Slater condition is satisfied, so the Karush-Kuhn-
Tucker (KKT) optimality conditions we list below apply. The Lagrangian of the problem
is:

L =
∫ 2π

0
p(t)

[
qS(t) − qB(t)

]
dt +

∫ 2π

0
ηS(t)qS(t)dt +

∫ 2π

0
ηB(t)qB(t)dt

+ λ

(∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt]

)
+ µ

(
KS −

∫ 2π

0
qB(t)dt

)
,

where λ, µ, ηS(t) and ηB(t) are the multipliers associated with their respective constraints
h1(·), h2(·), h3(·), h4(·) ≥ 0. To simplify notation, we have replaced E[qi(t)] ≡

∫ 2π
0 qi(t)dt
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for i = {B, S}. The KKT conditions are:

p(t) − λ + ηS(t) = 0, ∀t (A.3a)

p(t) − λ + µ − ηB(t) = 0, ∀t (A.3b)∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt ≥ 0 (A.3c)

KS −
∫ 2π

0
qB(t)dt ≥ 0 (A.3d)

and the associated slackness conditions. These conditions are necessary and sufficient, as
the constraints are linear and the objective functional ΠS is concave in qS(t) and qB(t).
W.l.o.g., we can focus attention on cases where, for any t ∈ [0, 2π], qB(t) > 0 → qS(t) = 0
and qS(t) > 0 → qB(t) = 0. We conjecture that there exist {tB, tB, tS, tS} ∈ [0, 2π], with
tB < tB and tS < tS, such that:

 qB(t) > 0 if tB < t < tB

qB(t) = 0 o.w.
and

 qS(t) > 0 if tS < t < tS

qS(t) = 0 o.w.

We proceed by finding the expressions for qB(t) and qS(t). From condition (A.3a):

p(t) = λ , if tS < t < tS, (A.4)

and from (A.3b):
p(t) = λ − µ , if tB < t < tB. (A.5)

The market price is given by the marginal cost of the thermal fringe generators,

p(t) = A(KR) − ρ(KR) sin t − qS(t) + qB(t)
1 − β2 . (A.6)

Combining equations (A.4) and (A.5) with (A.6),

λ = p(t) = A(KR) − ρ(KR) sin t − qS(t)
1 − β2 , if tS < t < tS

λ − µ = p(t) = A(KR) − ρ(KR) sin t + qB(t)
1 − β2 , if tB < t < tB.
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By continuity:

qS(tS) = qS(tS) = 0 ⇒ q∗
S(t) = ρ(KR) (sin tS − sin(t)) , if tS < t < tS

qB(tB) = qB(tB) = 0 ⇒ q∗
B(t) = ρ(KR) (sin t − sin tB) , if tB < t < tB.

From (A.3c) and (A.3d),

∫ tB

tB

ρ(KR) (sin tB − sin t) dt =
∫ tS

tS

ρ(KR) (sin t − sin tS) dt = KS. (A.7)

By the symmetry of the sine function, qS(tS) = qS(tS) = 0 and qB(tB) = qB(tB) = 0,
implying tB + tB = π and tS + tS = π. Let

{tB, tB, tS, tS} =
 {τ ; π − τ ; π + τ ; 2π − τ} for ρ(KR) ≥ 0

{π + τ ; 2π − τ ; τ ; π − τ} for ρ(KR) < 0.

Therefore, from condition (A.7) we obtain that τ ∈ [0, π/2) is implicitly given by:

cos τ −
(

π

2 − τ

)
sin τ = KS

2|ρ(KR)| ·

The value of τ that solves the equation above is decreasing in KS/2ρ(KR), it takes value
τ = 0 when KS = 2|ρ(KR)|, and τ = π

2 when KS = 0. Equilibrium market prices are:

p∗(t) =



(
A(KR) − ρ(KR) sin τ

)/
(1 − β2) if τ ≤ t ≤ π − τ(

A(KR) + ρ(KR) sin τ
)/

(1 − β2) if π + τ ≤ t ≤ 2π − τ(
A(KR) − ρ(KR) sin t

)/
(1 − β2) otherwise

.

Proof of Proposition 1

Storage profits are:

ΠS(KS, KR) =
∫ 2π

0
p∗(t)

[
q∗

S(t) − q∗
B(t)

]
dt − CS(KS)

=
∫ tS

ts

p∗(tS)q∗
S(t)dt −

∫ tB

tB

p∗(tB)q∗
B(t)dt − CS(KS)

=
[
p∗(tS) − p∗(tB)

]
KS − CS(KS)

= 2|b − αKR/2| sin τ

1 − β2 KS − CS(KS), (A.8)
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with tB, tB, tS and tS defined in Lemma 3. Partially differentiating equation (A.8):

dΠS(KS, KR)
∂KR

= KS

1 − β2

[
− α sign(2b − αKR) sin τ + 2|b − αKR/2| ∂τ

∂KR

cos τ

]

= −α sign(2b − αKR) KS

1 − β2

[
sin τ + KS

2|b − αKR/2|
(
π/2 − τ

)]

= −α sign(2b − αKR) cos τ

π/2 − τ

KS

1 − β2 , (A.9)

where in the second step we have used the fact that implicitly differentiating equation
(A.1) yields:

∂τ(KS, KR)
∂KR

= −αKS sign(2b − αKR)
4(b − αKR/2)2

(
π/2 − τ

)
cos τ

,

and in the last step we have substituted for the value of KS defined by equation (8).
Given that [cos τ/(π/2 − τ)] is positive for all τ ∈ [0.π/2), we have:

∂ΠS

∂KR

< 0 ⇔ α = 1 & KR < 2b.

The profits of renewable firms are:

ΠR(KS, KR) =
∫ 2π

0
p∗(t)1

2
(
1 − α sin t

)
KRdt − CR(KR)

=1
2

KR

1 − β2

(∫ τ

0

[
θ − KR/2 −

(
b − αKR/2

)
sin t

](
1 − α sin t

)
dt

+
∫ π−τ

τ

[
θ − KR/2 −

(
b − αKR/2

)
sin τ

](
1 − α sin t

)
dt

+
∫ π+τ

π−τ

[
θ − KR/2 −

(
b − αKR/2

)
sin t

](
1 − α sin t

)
dt

+
∫ 2π−τ

π+τ

[
θ − KR/2 +

(
b − αKR/2

)
sin τ

](
1 − α sin t

)
dt

+
∫ 2π

2π−τ

[
θ − KR/2 −

(
b − αKR/2

)
sin t

](
1 − α sin t

)
dt

)
− CR(KR)

=
[(

θ − KR/2)π + α
(
b − αKR/2

)(
τ + sin τ cos τ

)
] KR

1 − β2 − CR(KR).

(A.10)
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Partially differentiating equation (A.10):

∂ΠR(KS, KR)
∂KS

= α

(
b − KR/2

)
∂τ

∂KS

[
1 + (cos τ)2 − (sin τ)2

]
KR

1 − β2

= α

(
b − αKR/2

)
(−1)

2|b − αKR/2|(π/2 − τ) cos τ

[
1 + (cos τ)2 − (sin τ)2

]
KR

1 − β2

= −α sign(2b − αKR) cos τ

(π/2 − τ)
KR

1 − β2 , (A.11)

wherein the second step, we have used the fact that implicitly differentiating equation
(A.1) yields:

∂τ(KS, KR)
∂KS

= (−1)
2|b − αKR/2|(π/2 − τ) cos τ

·

Given that [cos τ/(π/2 − τ)] is positive for all τ ∈ [0.π/2), we have:

∂ΠR

∂KS

< 0 ⇔ α = 1 & KR < 2b.

Proof of Proposition 2

It follows the same steps as the proof of Proposition 1. The main difference is that the
sign of the analogs of expressions (A.9 and A.11) depends on sign(2b − K+

R + K−
R ).

Proof of Proposition 3

From equations (A.8) and (A.10), the profits of renewable and storage firms meeting the
mandates (K̄S, K̄R) are given by:

ΠS(K̄S, K̄R, ηS) = 2|b − αK̄R/2| sin τ

1 − β2 K̄S − CS(K̄S) + ηSK̄S

ΠR(K̄S, K̄R, ηR) =

(
θ − K̄R/2)π + α

(
b − αK̄R/2

)(
τ + sin τ cos τ

)
1 − β2 K̄R − CR(K̄R) + ηRK̄R

where ηi ≥ 0 for i = {S, R} represents the per-unit of capacity subsidy to technology i.
In turn, τ is a function of K̄S and K̄R, implicitly given by equation (8). The free entry
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condition implies zero profits, so equilibrium investment subsidies (η∗
S, η∗

R) are given by:

η∗
S(K̄S, K̄R) = max

{
CS(K̄S)

K̄S

− 2|b − αK̄R/2| sin τ

1 − β2 , 0
}

(A.12)

η∗
R(K̄S, K̄R) = max

{
CR(K̄R)

K̄R

−

(
θ − K̄R/2)π + α

(
b − αK̄R/2

)(
τ + sin τ cos τ

)
1 − β2 , 0

}
(A.13)

In the rest of this proof, we assume that mandates (K̄S, K̄R) are high enough to guarantee
that investment subsidies η∗

S and η∗
R are strictly positive. Differentiation gives:

∂η∗
S(K̄S, K̄R)

∂K̄S

=C ′
S(K̄S)K̄S − C(K̄S)

K̄2
S

− 2|b − αK̄R/2| cos τ

1 − β2
∂τ(K̄S, K̄R)

∂K̄S

=C ′
S(K̄S)K̄S − C(K̄S)

K̄2
S

− 2|b − αK̄R/2| cos τ

1 − β2
(−1)

2|b − αK̄R/2|(π/2 − τ) cos τ

=C ′
S(K̄S)K̄S − C(K̄S)

K̄2
S

+ 1
π/2 − τ

1
1 − β2 > 0.

∂η∗
R(K̄S, K̄R)

∂K̄R

=C ′
R(K̄R)K̄R − C(K̄R)

K̄2
R

+ π + τ + sin τ cos τ

2
1

1 − β2

− α
(
b − αK̄R/2

)(
1 − (cos τ)2 + (sin τ)2

) 1
1 − β2

∂τ(K̄S, K̄R)
∂K̄R

=C ′
R(K̄R)K̄R − C(K̄R)

K̄2
R

+ 1
1 − β2

(
π + τ + sin τ cos τ

2

+
(
b − αK̄R/2

)(
1 − (cos τ)2 + (sin τ)2

) K̄S sign(2b − αK̄R)
4(b − αK̄R/2)2

(
π/2 − τ

)
cos τ

)

=C ′
R(K̄R)K̄R − C(K̄R)

K̄2
R

+ 1
1 − β2

(
π + τ + sin τ cos τ

2 +
cos τ

[
cos τ − sin τ(π/2 − τ)]

π/2 − τ

)
> 0.

with τ implicitly given by equation (8). In the last step of the second expression, we
have substituted K̄S with equation (8). To determine the sign these expressions, we
have relied on τ ∈ [0, π/2) and on the convexity of the cost function, which implies
C

′(K̄i) > C(K̄i)/K̄i for i = {S, R}.
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We also have:

∂η∗
S(K̄S, K̄R)

∂K̄R

=
(

2|b − αK̄R/2| cos τ
∂τ(K̄S, K̄R)

∂K̄R

+ α

2 sign(2b − αK̄R) sin τ

)
(−1)

1 − β2

=
(

2|b − αK̄R/2| cos τ
−αK̄S sign(2b − αK̄R)

4(b − αK̄R/2)2
(
π/2 − τ

)
cos τ

+ α

2 sign(2b − αK̄R) sin τ

)
(−1)

1 − β2

=α sign(2b − αK̄R) cos τ

(π/2 − τ)
1

1 − β2 ·

∂η∗
R(K̄S, K̄R)

∂K̄S

=
(

− α(b − αK̄R/2)
(
1 − (cos τ)2 + (sin τ)2

)∂τ(K̄S, K̄R)
∂K̄S

)
(−1)

1 − β2

=
(

− α(b − αK̄R/2)
(
1 − (cos τ)2 + (sin τ)2

) (−1)
2|b − αK̄R/2|(π/2 − τ) cos τ

)
(−1)

1 − β2

=α sign(2b − αK̄R) cos τ

(π/2 − τ)
1

1 − β2 ·

Therefore, it follows that

∂η∗
i (K̄S, K̄R)

∂K̄i

∣∣∣∣∣
(η∗

S ,η∗
R)

> 0,

∂η∗
i (K̄S, K̄R)

∂K̄j

∣∣∣∣∣
(η∗

S ,η∗
R)

> 0 ⇔ α = 1 and K̄R < 2b.

Proof of Proposition 4

The regulator’s problem can be written as:

min
K̄S ,K̄R

Φ(K̄S, K̄R) ≡
∫ 2π

0
e
(
q∗(t))dt

s.t. η∗
S(K̄S, K̄R)K̄S + η∗

R(K̄S, K̄R)K̄R ≤ B,

where q∗(t) is defined in Lemma 2 and η∗
S > 0 and η∗

R > 0 are implicitly defined by
ΠS(K̄S, K̄R, η∗

S) = 0 and ΠR(K̄S, K̄R, η∗
R) = 0. We first show that the solution to

this problem always involves setting K̄∗
R ≥ 2b when α = 1 and B ≥ B̄, where B̄ is

the minimum budget that allows to mandate K̄R = 2b, i.e., B̄ = CR(2b) − (θ − b)π2b.
Suppose the regulator chooses K̄R < 2b with the remaining budget allocated to mandate
K̄S. Since ∂Φ/∂K̄S < 0, the largest reduction in emissions occurs when KS fully flattens
emissions, i.e., when the budget is large enough to mandate K̄S = K̃S(K̄R) = 2|b−K̄R/2|.
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Total emissions are given by:

Φ(K̄S, K̄R) =
∫ 2π

0
e

(
θ − K̄R

2

)
dt = 2πe

(
θ − K̄R

2

)
.

Since these emissions are decreasing in K̄R, they are minimized at K̄R = 2b and K̄S = 0.
Therefore, with a sufficiently large budget, any optimal solution must involve K̄∗

R ≥ 2b.
We now turn to the second part of the proposition. First, total emissions as a function
of (binding) technology mandates, are given by:

Φ(K̄S, K̄R) =
∫ τ

0
e
(
A(K̄R) − ρ(K̄R)sin t

)
dt +

∫ π−τ

τ
e
(
A(K̄R) − ρ(K̄R)sin τ

)
dt

+
∫ π+τ

π−τ
e
(
A(K̄R) − ρ(K̄R)sin t

)
dt +

∫ 2π−τ

π+τ
e
(
A(K̄R) + ρ(K̄R)sin τ

)
dt

+
∫ 2π

2π−τ
e
(
A(K̄R) − ρ(K̄R)sin t

)
dt.

First, we have:

∂Φ(K̄S, K̄R)
∂K̄S

=
∫ π−τ

τ
−e

′(
A(K̄R) − ρ(K̄R)sin τ

)
ρ(K̄R) cos τ

∂τ

∂K̄S

dt

+
∫ 2π−τ

π+τ
e

′(
A(K̄R) + ρ(K̄R)sin τ

)
ρ(K̄R) cos τ

∂τ

∂K̄S

dt

= ρ(K̄R) cos τ
∂τ

∂K̄S

(π − 2τ)
[
e

′(
A(K̄R) + ρ(K̄R) sin τ

)
− e

′(
A(K̄R) − ρ(K̄R) sin τ

)]
= sign(2b − K̄R)

[
e

′(
A(K̄R) − ρ(K̄R) sin τ

)
− e

′(
A(K̄R) + ρ(K̄R) sin τ

)]
< 0.

In order to compute the cross-derivative, note that:

∂
[
e

′
(
A(K̄R) − ρ(K̄R) sin τ

)]
∂K̄R

= e
′′(

A(K̄R) − ρ(K̄R) sin τ
)(1

2(sin τ − 1) − ρ(K̄R) cos τ
∂τ

∂K̄R

)

=
e

′′
(
A(K̄R) − ρ(K̄R) sin τ

)
2

(
cos τ

π/2 − τ
− 1

)
·

∂
[
e

′
(
A(K̄R) + ρ(K̄R) sin τ

)]
∂K̄R

= e
′′(

A(K̄R) − ρ(K̄R) sin τ
)(1

2(− sin τ − 1) + ρ(K̄R) cos τ
∂τ

∂K̄R

)

=
e

′′
(
A(K̄R) − ρ(K̄R) sin τ

)
2

(
− cos τ

π/2 − τ
− 1

)
·
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To ease notation, in what follows we remove the explicit reference to the dependence of
A(K̄R) and ρ(K̄R) on K̄R. Then, we have:

∂2Φ(K̄S, K̄R)
∂K̄S∂K̄R

= sign(2b − αK̄R)
[(

cos τ

π − 2τ
+ 1

2

)
e

′′(
A + ρ sin τ

)
+
(

cos τ

π − 2τ
− 1

2

)
e

′′(
A − ρ sin τ

)]
·

Since [cos τ/(π − 2τ)] > 0 for all τ ∈ [0, π/2), and since [A + ρ sin τ ] > [A − ρ sin τ ] is
positive when K̄R < 2b, we have that ∂2Φ(K̄S, K̄R)/∂K̄S∂K̄R > 0 for all K̄S and all
K̄R < 2b. For the case when K̄R > 2b, we define:

G(K̄S, K̄R) ≡
(

cos τ

π/2 − τ
+ 1

)
e

′′(
A + ρ sin τ

)
+
(

cos τ

π/2 − τ
− 1

)
e

′′(
A − ρ sin τ

)
.

Then, we have:

∂G(K̄S, K̄R)
∂K̄S

=∂τ(K̄S, K̄R)
∂K̄S

(
cos τ − (π/2 − τ) sin τ

(π/2 − τ)2

[
e

′′(
A + ρ sin τ

)
+ e

′′(
A − ρ sin τ

)]

+ ρ cos τ

[(
cos τ

π/2 − τ
+ 1

)
e

′′′(
A + ρ sin τ

)
+
(

cos τ

π/2 − τ
− 1

)
e

′′′(
A − ρ sin τ

)])
< 0,

where the negative sign comes from the fact that ∂τ/∂K̄S < 0, from e′′′(q) ≤ 0, and from
ρ(K̄R) < 0 for K̄R < 2b. Therefore, the function G(K̄S, K̄R) is minimized at K̄S = K̃S

for all K̄R > 2b. Evaluating G(K̄S, K̄R) at K̄S = K̃S, we get:

G(K̃S, K̄R) = 2
π

e
′′(

A(K̄R)
)
,

which is strictly positive for all K̄R ∈ (2b, θ −b]. Combining all previous results, we have
that G(K̄S, K̄R) is always strictly positive, so

∂2Φ(K̄S, K̄R)
∂K̄S∂K̄R

> 0 ⇔ K̄R < 2b.

Proof of Lemma 5

We state the Lemma more formally as follows, where to ease notation, recall that we
have defined

A(KR) ≡ θ − KR

2 ,

ρ(KR) ≡ b − α
KR

2 ·
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Lemma 5 (bis) Let charging
(
t ∈ [tB, tB]

)
and discharging

(
t ∈ [tS, tS]

)
periods be

defined by

{tB, tB, tS, tS} =

{
τM ; π − τM ; π + τM ; 2π − τM

}
if ρ(KR) ≥ 0{

π + τM ; 2π − τM ; τM ; π − τM
}

if ρ(KR) < 0

where τM ∈ [0, π/2) is implicitly defined by

cos τM − (π/2 − τM) sin τM = KS

|ρ(KR)| ,

for KS ∈ [0, |ρ(KR)|], and τM = 0 otherwise.

(i) Equilibrium storage decisions are:
For charging periods t ∈ [tB, tB] ,

qM
B (t) =

 ρ(KR)
[

sin t − sin τM
]
/2 if ρ(KR) ≥ 0

ρ(KR)
[

sin t + sin τM
]
/2 if ρ(KR) < 0

,

and qM
B (t) = 0 for all other t.

For discharging periods t ∈ [tS, tS],

qM
S (t) =

 ρ(KR)
[

− sin t − sin τM
]
/2 if ρ(KR) ≥ 0

ρ(KR)
[

− sin t + sin τM
]
/2 if ρ(KR) < 0

,

and qM
S (t) = 0 for all other t.

(ii) Equilibrium market prices are given by:

pM(t) =


A(KR) − ρ(KR)

(
sin t + sin τM

)
/2 if τM ≤ t ≤ π − τM

A(KR) − ρ(KR)
(

sin t − sin τM
)
/2 if π + τM ≤ t ≤ 2π − τM

A(KR) − ρ(KR) sin t otherwise

.

To prove it, note that the problem of the storage monopolist is:

max
qS(t),qB(t)

∫ 2π

0

(
D(t) − ω(t)KR − qS(t) + qB(t)

)(
qS(t) − qB(t)

)
dt

subject to constraints (7) and (8). The structure of the functional optimization problem
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is identical to the problem of a competitive storage firm. In particular, the optimization
problem is convex, so the KKT conditions that we list below are necessary and sufficient.
The Lagrangian of the problem, omitting the non-negativity constraints, is given by:

L =
∫ 2π

0

(
A(KR) − ρ(KR) sin t + qB(t) − qS(t)

)(
qS(t) − qB(t)

)
dt

+ λ

(∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt]

)
+ µ

(
KS −

∫ 2π

0
qB(t)dt

)
,

where λ and µ are the multipliers. W.l.o.g., we can focus attention on cases where, for
any t ∈ [0, 2π], qB(t) > 0 → qS(t) = 0 and qS(t) > 0 → qB(t) = 0. The KKT conditions
are:

A(KR) − ρ(KR) sin t − 2qS(t) − λ = 0, ∀t (A.14a)

A(KR) − ρ(KR) sin t + 2qB(t) − λ + µ = 0, ∀t (A.14b)∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt ≥ 0 (A.14c)

KS −
∫ 2π

0
qB(t)dt ≥ 0 (A.14d)

and the associated slackness conditions. These conditions are necessary and sufficient,
as the constraints are linear and the objective functional is concave in qS(t) and qB(t).
We proceed by finding the expressions for the reaction functions qB(t) and qS(t). From
condition (A.14a):

qS(t) = A(KR) − ρ(KR) sin t − λ

2 , if tS < t < tS,

and from (A.14b):

qB(t) = −A(KR) + ρ(KR) sin t + (λ − µ)
2 , if tB < t < tB.

By continuity:

qS(tS) = qS(tS) = 0 ⇒ qM
S (t) = ρ(KR)sin tS − sin(t)

2 , if tS < t < tS

qB(tB) = qB(tB) = 0 ⇒ qM
B (t) = ρ(KR)sin t − sin tB

2 , if tB < t < tB.
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From (A.14c) and (A.14d),

∫ tB

tB

ρ(KR)sin t − sin tB

2 dt =
∫ tS

tS

ρ(KR)sin tS − sin(t)
2 dt = KS. (A.15)

By the symmetry of the sine function, qS(tS) = qS(tS) = 0 and qB(tB) = qB(tB) = 0,
implying tB + tB = π and tS + tS = π. Let

{tB, tB, tS, tS} =

{
τM ; π − τM ; π + τM ; 2π − τM

}
for ρ(KR) ≥ 0{

π + τM ; 2π − τM ; τM ; π − τM
}

for ρ(KR) < 0.

Therefore, from condition (A.15) we obtain that τM ∈ [0, π/2) is implicitly given by:

cos τM −
(

π

2 − τM

)
sin τM = KS

|ρ(KR)| · (A.16)

Equilibrium market prices are given by:

pM(t) =


A(KR) − ρ(KR) sin t+sin τM

2 if τM ≤ t ≤ π − τM

A(KR) − ρ(KR) sin t−sin τM

2 if π + τM ≤ t ≤ 2π − τM

A(KR) − ρ(KR) sin t otherwise

.

Proof of Proposition 5

The profits of the storage profits monopolist are:

ΠM
S =

∫ 2π

0
pM(t)

[
qM

S (t) − qM
B (t)

]
dt − CS(KS)

=
∫ tS

ts

pM(tS)qM
S (t)dt −

∫ tB

tB

pM(tB)qM
B (t)dt − CS(KS)

=
∫ 2π−τM

π+τM

(
A(KR) − ρ(KR)sin t − sin τM

2

)
ρ(KR)− sin t − sin τM

2 dt

−
∫ π−τM

τM

(
A(KR) − ρ(KR)sin t + sin τM

2

)
ρ(KR)sin t − sin τM

2 dt − CS(KS)

=1
2ρ(KR)2

[
(π/2 − τM) cos 2τM + sin τM cos τM

]
− CS(KS). (A.17)

Partially differentiating equation (A.17):

∂ΠS(KS, KR)
∂KR

= −αρ(KR)
(
π/2 − τM − sin τM cos τM

)
, (A.18)
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where we have used the fact that implicitly differentiating equation (A.16) yields:

∂τM(KS, KR)
∂KR

= −αKS sign(2b − αKR)
(b − αKR/2)2

(
π/2 − τM

)
cos τM

.

Given that (π/2 − τM − sin τM cos τM
)

is positive for all τM ∈ [0.π/2), we have:

∂ΠM
S

∂KR

< 0 ⇔ α = 1 & KR < 2b.

The profits of renewable firms when storage is in the hands of a monopolist are:

ΠM
R =

∫ 2π

0
pM(t)1

2
(
1 − α sin t

)
KRdt − CR(KR)

=1
2KR

(∫ τM

0

(
A(KR) − ρ(KR) sin t

)(
1 − α sin t

)
dt

+
∫ π−τM

τM

(
A(KR) − ρ(KR)sin t + sin τM

2

)(
1 − α sin t

)
dt

+
∫ π+τM

π−τM

(
A(KR) − ρ(KR) sin t

)(
1 − α sin t

)
dt

+
∫ 2π−τM

π+τM

(
A(KR) − ρ(KR)sin t − sin τM

2

)(
1 − α sin t

)
dt

+
∫ 2π

2π−τM

(
A(KR) − ρ(KR) sin t

)(
1 − α sin t

)
dt

)
− CR(KR). (A.19)

Partially differentiating equation (A.19) (applying Leibniz’s integral rule and dropping
terms that cancel out):

∂ΠM
R (KS, KR)

∂KS

= −α sign(2b − αKR)KR
cos τM

π/2 − τM
,

where in the second step, we have used the fact that implicitly differentiating equation
(A.16) yields:

∂τM(KS, KR)
∂KS

= −1
|b − αKR/2|(π/2 − τM) cos τM

·

Therefore, we have:
∂ΠM

R

∂KS

< 0 ⇔ α = 1 & KR < 2b.
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Proof of Lemma 6

The problem of the storage monopolist is to choose KS to maximize profits, conditional
on operating storage optimally at the production stage. Note that any optimal KS must
fall on the interval

[
0, K̃S

]
, where K̃S = |ρ(K̄R)|. Thus, the problem is:

max
KS∈[0,K̃S ]

ΠM
S =

∫ 2π

0
pM(t; KS, K̄R)

(
qM

S (t; KS, K̄R) − qM
B (t; KS, K̄R)

)
dt − cSKS

=
∫ 2π−τM

π+τM

(
A(K̄R) − ρ(K̄R)sin t − sin τM

2

)
ρ(K̄R)− sin t − sin τM

2 dt

−
∫ π−τM

τM

(
A(K̄R) − ρ(K̄R)sin t + sin τM

2

)
ρ(K̄R)sin t − sin τM

2 dt − cSKS

where τM is a function of K̄R and KS implicitly given by:

cos τM −
(

π

2 − τM

)
sin τM = KS

|ρ(K̄R)|
· (A.20)

Note that the objective function is a continuously differentiable function. Moreover,
[0, K̃S] is closed, bounded and compact, so the solution set to the problem is non-empty.
Therefore, the unique interior solution KM

S is given by:

∂ΠM
S (KS, KR)

∂KS

= 0 ⇔ 2|ρ(K̄R)| sin τM(KM
S , K̄R) − cs = 0. (A.21)

with τM(KM
S , K̄R) implicitly given by equation (A.20). Moreover, the second order

condition is satisfied:

∂2ΠM
S (KS, K̄R)

∂K2
S

= 2|ρ(K̄R)| cos τM(KM
S , K̄R)∂τM(KS, K̄R)

∂KS

= −2
(π/2 − τM

(
KS, K̄R

) < 0,

for all KS ∈ [0, K̃S]. Thus, KM
S is the unique global maximum, which is interior for cS

sufficiently small.
We now turn to compare the investment condition of the storage monopolist with the
one for the competitive storage firm. From the proof of Proposition 1, the profits of
competitive storage firms at the investment stage when there is no market power in
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generation (i.e., β = 0) and investment costs are linear are given by:

ΠC
S (KS, K̄R) = 2|ρ(K̄)| sin τC(KS, K̄R)KS − csKS.

with τC(KS, K̄R) implicitly given by equation:

cos τC −
(

π

2 − τC

)
sin τC = KS

2|ρ(K̄R)|
· (A.22)

Storage firms enter the market until their profits become zero. Therefore, equilibrium
competitive storage investment KC

S given by:

ΠC
S (KC

S , K̄R) = 0 ⇔ 2|ρ(K̄R)| sin τC(KC
S , K̄R) − cs = 0. (A.23)

with τC(KC
S , K̄R) implicitly given by equation (A.22).

Comparing equations (A.21) and (A.23), since the left hand-side of these equations is
monotonically decreasing in τ , it is straightforward to determine that:

τM(KS, K̄R) < τC(KS, K̄R) ⇒ sin τM(KS, K̄R) < sin τC(KS, K̄R) ⇒ KM
S (K̄R) < KC

S (K̄R).

Proof of Lemma 7

Assuming the renewable mandate K̄R is above the level of renewable capacity that would
enter the market in the absence of renewable subsidies, from equations (A.10) (for the
case where β = 0) and equation (A.19), we have that the per-unit investment subsides
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needed to reach K̄R under competitive and monopoly storage are:

ηC
R(KC

S , K̄R) = cR(K̄R)
K̄R

− 1
2

(∫ τC

0

[
A(K̄R) − ρ(K̄R) sin t

](
1 − α sin t

)
dt

+
∫ π−τC

τC

[
A(K̄R) − ρ(K̄R) sin τC

](
1 − α sin t

)
dt

+
∫ π+τC

π−τC

[
A(K̄R) − ρ(K̄R) sin t

](
1 − α sin t

)
dt

+
∫ 2π−τC

π+τC

[
A(K̄R) + ρ(K̄R) sin τC

](
1 − α sin t

)
dt

+
∫ 2π

2π−τC

[
A(K̄R) − ρ(K̄R) sin t

](
1 − α sin t

)
dt

)

ηM
R (KM

S , K̄R) = cR(K̄R)
K̄R

− 1
2

(∫ τM

0

(
A(K̄R) − ρ(K̄R) sin t

)(
1 − α sin t

)
dt

+
∫ π−τM

τM

(
A(K̄R) − ρ(K̄R)sin t + sin τM

2

)(
1 − α sin t

)
dt

+
∫ π+τM

π−τM

(
A(K̄R) − ρ(K̄R) sin t

)(
1 − α sin t

)
dt

+
∫ 2π−τM

π+τM

(
A(K̄R) − ρ(K̄R)sin t − sin τM

2

)(
1 − α sin t

)
dt

+
∫ 2π

2π−τM

(
A(K̄R) − ρ(K̄R) sin t

)(
1 − α sin t

)
dt

)
.

From equations (A.21) and (A.23), we have that, for a given a renewable mandate K̄R,
equilibrium investments in storage capacity under competitive and monopoly storage
are (assuming they are strictly positive):

cS = 2|ρ(K̄R)| sin τC(KC
S , K̄R)

cS = 2|ρ(K̄R)| sin τM(KM
S , K̄R).

Combining these two expressions, we have:

τC(KC
S , K̄R) = τM(KM

S , K̄R) ≡ τ ∗(K̄R), ∀K̄R.
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Therefore,

ηC
R(KC

S , K̄R) − ηM
R (KM

S , K̄R) = −1
2

(∫ π−τ∗

τ∗
ρ(K̄R)sin t − sin τ ∗

2
(
1 − α sin t

)
dt

+
∫ 2π−τ∗

π+τ∗
ρ(K̄R)sin t + sin τ ∗

2
(
1 − α sin t

)
dt

)

= − α

2 ρ(K̄R)
(

sin τ ∗ cos τ ∗ + τ ∗ − π/2
)
.

Since
(

sin τ ∗ cos τ ∗ + τ ∗ − π/2
)

is negative for all τ ∗ ∈ [0, π/2), we have:

ηC
R(KC

S , K̄R) > ηM
R (KM

S , K̄R) ⇔ α = 1 & K̄R < 2b.

Proof of Lemma 8

Lemma 8 Let charging
(
t ∈ [tB, tB]

)
and discharging

(
t ∈ [tS, tS]

)
periods be defined

by

{tB, tB, tS, tS} =
 {τ̂ ; π − τ̂ ; π + τ̂ ; 2π − τ̂} if α = −1

{π + τ̂ ; 2π − τ̂ ; τ̂ ; π − τ̂} if α = 1

where τ̂ ∈ [0, π/2) is implicitly defined by

cos τ̂ − (π/2 − τ̂) sin τ̂ = KS/KR,

for KS ∈ [0, KR], and τ̂ = 0 otherwise.

Equilibrium storage decisions are:
For charging periods t ∈ [tB, tB] ,

q̂B(t) =
 αKR

[
sin τ̂ − sin t

]
/2 if α = −1

αKR

[
− sin τ̂ − sin t

]
/2 if α = 1

,

and q̂B(t) = 0 for all other t.
For discharging periods t ∈ [tS, tS],

q̂S(t) =
 αKR

[
sin t + sin τ̂

]
/2 if α = −1

αKR

[
sin t − sin τ̂

]
/2 if α = 1

,

and q̂S(t) = 0 for all other t.

56



To prove it, for given KS, the problem of storage firms located in region W is:

max
qS(t),qB(t)

∫ 2π

0
pW (t)

[
qS(t) − qB(t)

]
dt

subject to constraints (7) and (8). The optimization problem is convex, so the KKT con-
ditions that we list below are necessary and sufficient. The Lagrangian of the problem,
omitting the non-negativity constraints, is given by:

L =
∫ 2π

0
pW (t)

[
qS(t) − qB(t)

]
dt + λ

(∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt

)
+ µ

(
KS −

∫ 2π

0
qB(t)dt

)

where λ and µ are the multipliers. W.l.o.g., we can focus attention on cases where, for
any t ∈ [0, 2π], qB(t) > 0 → qS(t) = 0 and qS(t) > 0 → qB(t) = 0. The KKT conditions
are:

pW (t) − λ = 0, ∀t (A.24a)

pW (t) − λ + µ = 0, ∀t (A.24b)∫ 2π

0
qB(t)dt −

∫ 2π

0
qS(t)dt ≥ 0 (A.24c)

KS −
∫ 2π

0
qB(t)dt ≥ 0 (A.24d)

and the associated slackness conditions. These conditions are necessary and sufficient,
as the constraints are linear and the objective functional is concave in qS(t) and qB(t).
Substituting expression (12), we have:

qS(t) = T − (1 − α sin t)KR/2 − λ/2 , if tS < t < tS

qB(t) = (λ − µ)/2 − T + (1 − α sin t)KR/2 , if tB < t < tB.

By continuity:

qS(tS) = qS(tS) = 0 ⇒ q̂S(t) = αKR

2
(

sin tS − sin t
)

, if tS < t < tS

qB(tB) = qB(tB) = 0 ⇒ q̂B(t) = αKR

2
(

sin t − sin tB

)
, if tB < t < tB.

From (A.24c) and (A.24d),

∫ tB

tB

αKR

2
(

sin t − sin tB

)
dt =

∫ tS

tS

αKR

2
(

sin tS − sin t
)
dt = KS. (A.25)
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By the symmetry of the sine function, qS(tS) = qS(tS) = 0 and qB(tB) = qB(tB) = 0,
implying tB + tB = π and tS + tS = π. Let

{tB, tB, tS, tS} =
 {τ̂ ; π − τ̂ ; π + τ̂ ; 2π − τ̂} for α = −1

{π + τ̂ ; 2π − τ̂ ; τ̂ ; π − τ̂} for α = 1.

Therefore, from condition (A.25) we obtain that τ̂ ∈ [0, π/2) is implicitly given by:

cos τ̂ −
(

π

2 − τ̂

)
sin τ̂ = KS

KR

· (A.26)

Equilibrium market prices are given by:

p̂W (t) =


2T − (1 − α sin τ̂)KR if τ̂ ≤ t ≤ π − τ̂

2T − (1 + α sin τ̂)KR if π + τ̂ ≤ t ≤ 2π − τ̂

2T − (1 − α sin t)KR otherwise

.

Proof of Proposition 6

Storage profits are:

ΠS(KS, KR) =
∫ 2π

0
p̂W (t)

[
q̂S(t) − q̂B(t)

]
dt − CS(KS)

=
∫ tS

ts

p̂W (tS)q̂S(t)dt −
∫ tB

tB

p̂W (tB)q̂B(t)dt − CS(KS)

=
[
p̂W (tS) − p̂W (tB)

]
KS − CS(KS)

= 2KR sin τ̂(KS, KR)KS − CS(KS), (A.27)

with tB, tB, tS and tS defined in Lemma 8, and with τ̂(KS, KR) implicitly defined by
(A.26). Partially differentiating equation (A.27):

∂ΠS(KS, KR)
∂KR

= 2
(

sin τ̂ + KR cos τ̂
∂τ̂

∂KR

)
KS = 2

(
sin τ̂ + KS(

π/2 − τ̂
)
KR

)
KS > 0,

where in the second step we have used the fact that implicitly differentiating equation
(A.26) yields:

∂τ̂(KS, KR)
∂KR

= KS(
π/2 − τ̂

)
K2

R cos τ̂
·
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The profits of renewable firms are:

ΠR(KS, KR) =
∫ 2π

0
p̂W (t)1

2
(
1 − α sin t

)
KRdt − CR(KR)

=1
2KR

(∫ τ̂

0

(
2T − (1 − α sin t)KR

)(
1 − α sin t

)
dt

+
∫ π−τ̂

τ̂

(
2T − (1 − α sin τ̂)KR

)(
1 − α sin t

)
dt

+
∫ π+τ̂

π−τ̂

(
2T − (1 − α sin t)KR

)(
1 − α sin t

)
dt

+
∫ 2π−τ̂

π+τ̂

(
2T − (1 + α sin τ̂)KR

)(
1 − α sin t

)
dt

+
∫ 2π

2π−τ̂

(
2T − (1 − α sin t)KR

)(
1 − α sin t

)
dt

)
− CR(KR),

with τ̂(KS, KR) implicitly defined by (A.26). Partially differentiating the expression
above (applying integral rule and omitting terms that cancel out):

∂ΠR(KS, KR)
∂KS

= KR

2

[ ∫ π−τ̂

τ̂
α cos τ̂

∂τ̂

∂KS

(1 − α sin t)dt −
∫ 2π−τ̂

π+τ̂
α cos τ̂

∂τ̂

∂KS

(1 − α sin t)dt

]

= KR

2 α cos τ̂
∂τ̂

∂KS

(
− 4α cos τ̂

)
= 2KR cos τ̂

π/2 − τ̂
> 0,

where we have used the fact that implicitly differentiating equation (A.26) yields:

∂τ̂(KS, KR)
∂KS

= −1
(π/2 − τ̂)KR cos τ̂

·
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A Smoother Correlations

In this section, we show that our main results remain robust when renewable production
is only partially synchronized with demand, rather than being perfectly procyclical or
countercyclical – as assumed in our baseline model. Empirically, most renewable tech-
nologies (and, even more so, diversified portfolios that combine wind and solar) have
degrees of alignment with demand that are in between the two extreme cases examined
in the baseline model.

To capture this richer set of possibilities, we introduce one parameter, a ∈ [0, π],
that continuously shifts the availability profile of renewables relative to demand. This
single parameter delivers two sufficient statistics: ρ(D, ω), for the “functional” correla-
tion between demand and renewable availability, and ρ(pNS, ωKR), for the “functional”
correlation between prices and renewable production. These metrics allow us to trace
out how storage behavior, price formation, and the strategic interaction between tech-
nologies change as we move away from the extreme benchmark cases.

In what follows, we (i) formalize the notion of time-domain functional correlation,
(ii) derive closed-form expressions for prices and correlations as functions of a, and
(iii) show that the threshold capacity K∗

R(a) = 2b cos a endogenously adjusts with the
degree of cyclicality, which in turn determines whether storage and renewables act as
strategic substitutes or complements. Accordingly, because the phase-shift parameter
simply rescales the critical capacity to K∗

R(a) = 2b cos a, every qualitative finding is the
same as in the baseline model presented in the body of the paper. Crucially, whether
storage and renewables are complements or substitutes depends only on the sign of the
correlation between prices and renewable production: a positive correlation makes them
substitutes, while a negative one turns them into complements.

Extending the argument to multiple renewable technologies, we still find that storage
crowds out one technology and crowds in the other whenever their availability profiles
are sufficiently negatively correlated (i.e., when one is sufficiently procyclical and the
other is sufficiently countercyclical).
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In the new modified version of the model, demand and renewable availability are:

D(t) = θ − b sin t,

ω(t) = 1
2
[
1 − sin(t + a)

]
.

The parameter a ∈ [0, π] shifts horizontally the renewable availability curve. In one ex-
treme, when a = 0, the peaks of demand and renewables coincide. In the other extreme,
when a = π, the peak (valley) of demand exactly coincides with the valley (peak) of
renewable availability. For intermediate values of a, we have intermediate degrees of
cyclicality between demand and renewable availability. We define ρ(D, ω) as the “time
functional correlation” between D(t) and ω(t), which is given by the time covariance
between the deviations from their mean of demand and renewable availability (over one
day), divided by the time variances of demand and renewables (see the subsection below
for the computations):36

ρ(D, ω) = Cov(D, ω)√
Var(D) Var(ω)

= cos a.

36The intuition behind this concept can be found by asking: at any given moment during the day,
when one curve is above its own daily average, is the other typically above or below its own average?
To formalize this idea, we use a statistical correlation formula but integrate over time rather than
averaging across multiple realizations. This is why we refer to it as a time-functional correlation. A
positive correlation, for instance, indicates that the two curves tend to lie on the same side of their
respective means at the same hours – that is, they tend to peak together.
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Figure A.1: Demand and renewable availability under varying functional correlations
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Notes: This figure illustrates the time dynamics of electricity demand (black curve) and renewable
production (colored curves), for three values of the phase-shift parameter a. When a = 0 (yellow
curve), renewables and demand are perfectly aligned: both peak at the same time, representing a
procyclical scenario. When a = π (blue curve), their peaks are misaligned: renewable availability is
highest when demand is lowest, and vice versa. The intermediate case a = π

2 (red curve) reflects no
clear alignment. The parameter a ∈ [0, π] thus controls the “functional correlation” between demand
and renewable supply over time.

This correlation takes value 1 when a = 0 (renewable availability peaks exactly with
demand), and monotonically decreases in a until it reaches the value −1 when a = π

(production peaks when demand troughs). When a = π/2, the correlation is 0 (produc-
tion is a quarter-cycle out of phase).
We begin by computing net demand and deriving the wholesale price in the absence of
storage. We have that:

ω(t) KR = 1
2
[
1 − sin(t + a)

]
KR = KR

2 − KR

2
[
sin t cos a + cos t sin a

]
.
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Subtracting from D(t):

D(t) − ωKR = θ − b sin t −
[
KR

2 − KR

2 (sin t cos a + cos t sin a)
]

=
(

θ − KR

2

)
−
[
b − KR

2 cos a
]

sin t +
[
KR

2 sin a
]

cos t.

We define:

A(KR) = θ − KR

2 , ϑsin(KR, a) = b − KR

2 cos a, ϑcos(KR, a) = KR

2 sin a.

Then, in the absence of market power in generation,37 prices are given by net demand
(recall that marginal costs are linear):

pNS(t) = D(t) − ωKR = A − ϑsin sin t + ϑcos cos t.

To simplify, we define:

R(KR, a) =
√

ϑ2
sin + ϑ2

cos, φ = arctan
(

ϑcos

ϑsin

)
.

Then, using the identity −ϑsin sin t + ϑcos cos t = − R sin(t − φ), we obtain:

pNS(t) = A − R sin
(
t − φ

)
.

The minimum price occurs at t = φ+π/2, and the maximum price at t = φ+3π/2. The
parameter R represents the amplitude of the price curve, i.e., the magnitude of price
fluctuations over time. The parameter φ captures the influence of renewables on the
timing of the price minimum. In the absence of renewables, the minimum price would
occur at t = π/2; thus, φ indicates the extent to which renewable generation “delays”
the price valley. As before, we can compute the functional correlation between the price
pNS(t) with the renewable production ω(t) KR, which is given by:

ρ
(
pNS, ωKR

)
= Cov(pNS, ωKR)√

Var(pNS) Var(ωKR)
= cos(φ + a) =

b cos a − KR

2
R

·

When a ≥ π/2, the correlation is always negative. When a < π/2, we have that the
37For clarity of exposition, in this section we assume β = 0 i.e., there is no market power in generation,

but the results remain unchanged if we allow for β taking positive values.
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correlation satisfies:

ρ
(
pNS, ωKR

)
=


> 0, KR < 2b cos a,

= 0, KR = 2b cos a,

< 0, KR > 2b cos a.

The functional correlation captures whether renewable production tends to occur in
hours when prices are high (positive), remain constant (zero), or when prices are low
(negative), flipping sign exactly when capacity crosses the threshold K∗

R = 2b cos a.
Note that the threshold is decreasing in a, which means that the smaller the positive
functional correlation between prices and renewables, the lower the renewable capacity
size required to flip the correlation from positive to negative.
We now turn to characterize storage decisions. Let the no-storage price in the “rotated
time” u ≡ t − φ be:

pNS(u) = A − R sin u, u ∈ [0, 2π], R > 0.

Note that the price curve still preserves the symmetry properties, which allows us to char-
acterize the behavior of storage operators in the same way as in the benchmark model.
The valley occurs when u = π/2 and the peak when u = 3π/2. A perfectly competitive
storage firm with capacity KS chooses to charge qB(u) ≥ 0 and discharge qS(u) ≥ 0 to
solve:

max
qB(u), qS(u)

∫ 2π

0
pNS(u)

[
qS(u) − qB(u)

]
du

subject to ∫ 2π

0
qB(u) du = KS,

∫ 2π

0

[
qS(u) − qB(u)

]
du = 0.

Lemma 9 There is a unique τ ∈ (0, π/2) such that

KS = 2R
[
cos τ − (π

2 − τ) sin τ
]

(A1)

and the optimal rule is:

qB(u) = R[sin u − sin τ ] : u ∈ [τ, π − τ ],

qS(u) = R[sin u + sin τ ] : u ∈ [π + τ, 2π − τ ],
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The market price in those regions is piece-wise constant:

pbuy = A − R sin τ < psell = A + R sin τ (A2)

while outside the trading windows it coincides with the no storage price pNS = A−R sin u.
If KS = 0, the solution is τ = π/2 and no trading occurs. If KS ≥ 2R, then τ = 0 and
the whole day is flattened to the single price A.

Note that the price curve is always a smooth and symmetric price wave. A competi-
tive storage operator flattens this curve in periods of low and high prices, and remains
idle when prices take intermediate values. Returning to real time simply shifts those
windows forward by φ: charging happens for t ∈ [φ + τ, φ + π − τ ], discharging for
t ∈ [φ + π + τ, φ + 2π − τ ]. Whether this behavior helps or hurts a renewable producer
depends solely on the sign of the correlation between prices and renewable production
i.e., ρ

(
pNS, ωKR

)
. If production peaks in the naturally expensive hours (positive corre-

lation), storage competes against renewables at the very moment it sells, so more storage
cuts renewable profits. If production peaks in cheap hours (negative correlation), the
storage owner buys in those same hours and props the price up, boosting renewable
profits. This is formalized in the following proposition:

Proposition 7 Renewables and storage are strategic substitutes if and only if prices and
renewables correlate positively, i.e.,

∂ΠR

∂KS

< 0 and ∂ΠS

∂KR

< 0 ⇔ ρ
(
pNS, ωKR

)
> 0.

A positive functional correlation means that renewables generate most of their output in
the high-price half of the day. Thus, additional storage flattens those peaks and erodes
renewable profits, while extra renewable capacity shrinks price differences and harms
storage profits. In contrast, a negative correlation reverses the timing: renewables tend
to produce in cheap hours, so storage’s charging pushes up prices and both assets benefit
from each other. Overall, this new framework keeps the same economic insight as the
baseline model: renewables and storage are strategic substitutes when renewable output
correlates positively with demand and capacity is low. However, in the new framework,
the critical capacity threshold depends on how well the renewable profile lines up with
demand: if renewables are not sufficiently procyclical (i.e., if a is not sufficiently small),
storage and renewables complement each other.
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Our results regarding the effect of storage in markets with multiple renewable tech-
nologies also apply in the current framework, albeit with some qualifications. Let tech-
nology + be procyclical (i.e., a+ ∈ [0, π/2)) and technology − be countercyclical (i.e.,
a− ∈ (π/2, π]), with capacities K+

R and K−
R , respectively.

Lemma 10 Equilibrium prices correlate positively with renewable technology + and neg-
atively with renewable technology − if and only if 2b cos a+ > K+

R + cos(a− − a+)K−
R .

The condition above generalizes the original condition of the benchmark model (K+
R <

K−
R + 2b)38. The left-hand side, 2b cos a+, captures how strongly demand-driven prices

rise when the “+” technology (the procyclical one) is abundant.39 The right-hand side,
K+

R +K−
R cos(a− −a+), is the combined dampening effect of the two renewable technolo-

gies during those same hours: the + technology’s own capacity plus the share of the −
technology’s capacity that produces simultaneously with the + technology (that share
is scaled by cos(a− − a+)). Whenever the demand swing on the left is bigger than this
total dampening term,

2b cos a+ > K+
R + K−

R cos(a− − a+),

the + technology still sells mostly in high-price hours, so prices move with the + tech-
nology and against the − technology.

If the inequality reverses (because capacities become larger or because the two tech-
nologies peak at nearly the same time), the + technology flattens prices enough that
it also ends up producing when prices are low, and both renewables become negatively
correlated with price. Symmetrically, if the inequality flips enough in the other direc-
tion, the + technology becomes negatively correlated with prices, while the − technology
becomes positively correlated. Hence, a sufficiently large capacity of the procyclical re-
newable technology can make storage complement this technology and substitute the
countercyclical one.
Note that if the two technologies have the same size (i.e., K+

R = K−
R = KR), the condition

simplifies to:
KR <

2b cos a+

1 + cos(a− − a+) ·

38In fact, we obtain this condition for the case where a+ = 0 and a− = π.
39The term 2b cos a+ is exactly the price swing driven by demand alone evaluated at the hour when

the + technology peaks (it equals 0 if the peak occurs when demand is average, and it equals 2b if the
peak coincides with the demand peak).
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As long as capacity is below that threshold, the + technology is positively correlated
with price while the − technology is negatively correlated. Once capacity exceeds it,
both technologies end up negatively correlated with prices, and storage complements
them both instead of substituting for one of them.

Proposition 8 Let i, j ∈ {+, −} with i ̸= j and define Si = ϑsin cos ai − ϑcos sin ai, with

ϑsin = b − 1
2

(
K+ cos a+ + K− cos a−

)
, ϑcos = 1

2

(
K+ sin a+ + K− sin a−

)
.

Then
sign

(
∂Πi

R

∂KS

)
= − sign(Si), sign

(
∂ΠS

∂Ki
R

)
= sign(Si).

Therefore:

1. If Si > 0 then storage is a strategic substitute to technology i and a strategic
complement to technology j:

∂Πi
R

∂KS

< 0,
∂Πj

R

∂KS

> 0,
∂ΠS

∂Ki
R

< 0,
∂ΠS

∂Kj
R

> 0.

2. If Si < 0 the roles reverse: storage complements technology i and substitutes tech-
nology j.

Whether storage helps or hurts a given renewable technology now boils down to a
single number, Si = ϑsin cos ai − ϑcos sin ai, which is the time–covariance between that
technology’s output and the market price in the absence of storage. If Si > 0, the
technology tends to generate in high-price hours, so extra storage depresses its revenues,
making storage and renewables strategic substitutes. If Si < 0, they are complements.
Under the inequality 2b cos a+ > K+

R + K−
R cos(a−−a+), we have S+ > 0 > S−: storage

crowds out the pro-cyclical technology and crowds in the counter-cyclical one, exactly
as in Proposition 2 of the benchmark model. Reversing the inequality flips the roles.

Computations and Proofs for Appendix A

Functional Correlations. We first compute the functional time correlation between
demand and renewable availability. The deviations from their mean, for demand and
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renewable availability, are:

D̃(t) = D(t) − D = θ − b sin t − θ = − b sin t

ω̃(t) = ω(t) − ω = 1
2
[
1 − sin(t + a)

]
− 1

2 = − 1
2 sin(t + a)

So the functional time covariance is:

Cov
(
D, ω

)
= 1

2π

∫ 2π

0
D̃(t) ω̃(t) dt = b

4π

∫ 2π

0
sin t sin(t + a) dt.

Using the identity
∫ 2π

0
sin t sin(t + a) dt = π cos a, we obtain

Cov
(
D, ω

)
= b

4π
· π cos a = b

4 cos a.

The functional time variances are given by:

Var
(
D
)

= 1
2π

∫ 2π

0

[
D̃(t)

]2
dt = 1

2π

∫ 2π

0
b2 sin2 t dt = b2

2π

(
π
)

= b2

2 .

Var
(
ω
)

= 1
2π

∫ 2π

0

[
ω̃(t)

]2
dt = 1

2π

∫ 2π

0

(
−1

2 sin(t + a)
)2

dt = 1
4

1
2π

∫ 2π

0
sin2 t dt = 1

8 .

Therefore, the functional time correlation between demand and renewable availability is
given by:

ρ(D, ω) = Cov(D, ω)√
Var(D) Var(ω)

=
b

4 cos a√
b2

2 · 1
8

=
b

4 cos a

b

4

= cos a.

We can proceed in a similar way to compute the correlation between prices and renewable
production. From

pNS(t) = A − R sin
(
t − φ

)
, pNS = A,

we set
p̃(t) = pNS(t) − pNS = − R sin

(
t − φ

)
.

For renewable production,

ω(t) KR = KR

2
[
1 − sin(t + a)

]
, ω KR = KR

2 ,
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so
ỹ(t) := ω(t) KR − ω KR = − KR

2 sin(t + a).

The functional time covariance is given by:

Cov
(
pNS, ωKR

)
= 1

2π

∫ 2π

0
p̃(t) ỹ(t) dt = RKR

4 cos(φ + a).

The functional time variances are given by:

Var
(
pNS

)
= 1

2π

∫ 2π

0

[
−R sin

(
t − φ

)]2
dt = R2

2

Var
(
ωKR

)
= 1

2π

∫ 2π

0

[
−KR

2 sin(t + a)
]2

dt = K2
R

8 .

Therefore, the functional time correlation is given by:

ρ
(
pNS, ωKR

)
= Cov(pNS, ωKR)√

Var(pNS) Var(ωKR)
=

RKR

4 cos(φ + a)√
R2

2
K2

R

8

= cos(φ + a).

Since
cos(φ + a) = ϑsin cos a − ϑcos sin a

R
=

b cos a − KR

2
R

,

we have:
sign

[
ρ
(
pNS, ωKR

)]
= sign

(
b cos a − KR

2

)
.

Proof of Lemma 9.
Note that, once we reframe the problem of storage operators in “rotated time” u = t−φ,
we can follow exactly the same steps as the proof of Lemma 3. The main difference is
that the amplitude of the price cycle (that appears in the main expressions) is now given
by R(KR, a).
In particular, since pNS(u) is monotone between valley and peak, the buy set and sell
set are single symmetric intervals around the valley u = π/2 and peak u = 3π/2. Let
τ be the left boundary. By symmetry, the four endpoints are τ, π − τ, π + τ, 2π − τ .
At u = τ , pbuy = A − R sin τ , and at u = π + τ , psell = A + R sin τ , giving the spread
γ = 2R sin τ . Energy charged equals the area between the sine curve and the line pbuy
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over [τ, π − τ ]. Therefore, we have:

KS = 2R
[
cos τ − (π

2 − τ) sin τ
]
.

Since the function in brackets decreases strictly from 1 to 0 as τ goes 0 → π/2, τ is
unique.

Proof of Proposition 7.
Following the same steps as in the proof of Proposition 1, storage revenue can be written
as:

ΠS = 2KS R(KR, a) sin τ(KR, KS, a)

where τ = τ(KS, KR, a) ∈ (0, π/2) is pinned down by the capacity constraint

KS = 2R

[
cos τ −

(
π
2 − τ

)
sin τ

]
(A.1)

The derivative with respect to KR is:

∂ΠS

∂KR

= 2KS

[
dR

dKR

sin τ + R cos τ
dτ

dKR

]
. (A.2)

Implicitly differentiating equation (A.1) yields:

∂τ(KS, KR, a)
∂KR

= ∂R(KS, KR, a)
∂KR

cos τ − (π/2 − τ) sin τ

R (π/2 − τ) cos τ
,

Substituting in equation (A.2) we get:

∂ΠS

∂KR

= 2KS
dR

dKR

[ cos τ

π/2 − τ

]
.

Because 0 < τ < π/2, the square bracket in the last equation is positive. Hence the sign
of the derivative is the sign of dR/dKR, which is given by:

dR

dKR

= 1
2R

[
− b cos a + KR

2 cos2 a + KR

2 sin2 a

]
= KR − 2b cos a

4R
·
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Therefore:
KR < 2b cos a =⇒ ∂ΠS

∂KR

< 0

KR > 2b cos a =⇒ ∂ΠS

∂KR

> 0.

The profits of renewables are:

ΠR(KR, KS) = KR

∫ 2π

0
pS(t) ω(t) dt.

A marginal capacity increase dKS widens the charge and discharge areas by dτ . More-
over, prices move by + dp on the charge area and by − dp on the symmetric discharge
area (with the same dp > 0 and the same width dτ). Hence:

dΠR = KR

∫
ω(t) dpS(t)dt = 2KR dp

∫ 2π

0

[
ω(t) − ω̄

]
sign

[
pNS(t) − p̄NS

]
dt.

The last integral has the opposite sign of the covariance Cov(ω, pNS). Direct integration
gives Cov(ω, pNS) = 1

4

(
b cos a − KR

2

)
.

Renewable profits are given by:

ΠR = KR

∫ 2π

0
pS(u) ω(u) du.

with ω(u) = 1
2

[
1 − sin(u + a)

]
and where pS(u) is the price curve with storage. That is:

pS(u) =



A − R sin τ, u ∈ [τ, π − τ ]

A + R sin τ, u ∈ [π + τ, 2π − τ ]

A − R sin u, otherwise.

Sign of ∂ΠR/∂KS. A marginal increase dKS > 0 widens the buy/sell windows sym-
metrically and lowers the peak–valley spread γ = 2R sin τ . Equivalently, the flat price
in the buy window moves up by dp > 0 while the flat price in the sell window moves
down by the same amount dp > 0. Writing everything in rotated time u = t − φ, we
have

pNS(u) = A − R sin u, pS(u) =


A − R sin τ, u ∈ [τ, π − τ ],

A + R sin τ, u ∈ [π + τ, 2π − τ ],

A − R sin u, otherwise.
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Hence the price change induced by dKS can be written as

dpS(u) = + dp · 1[τ,π−τ ](u) − dp · 1[π+τ,2π−τ ](u) = dp · sign
(
p̃NS(u)

)
,

where p̃NS(u) = pNS(u) − A = −R sin u and dp > 0 is proportional to the change in γ.
Renewable revenue changes by

dΠR = KR

∫ 2π

0
ω(u) dpS(u) du = KR dp

∫ 2π

0

[
ω(u) − ω

]
sign

(
p̃NS(u)

)
du,

with ω = 1
2 . Since p̃NS(u) is a pure sine and ω̃(u) = −1

2 sin(u+a) is also a pure sine, the
integral above has the same sign as the covariance integral

∫
ω̃(u) p̃NS(u) du. Therefore

sign
(

∂ΠR

∂KS

)
= − sign

(
Cov(ω, pNS)

)
.

Direct computation gives

Cov(ω, pNS) = 1
2π

∫ 2π

0

[
−1

2 sin(u + a)
][

−R sin u
]

du = R

4 cos(φ + a) = 1
4

(
b cos a − KR

2

)
.

Hence,
sign

(
∂ΠR

∂KS

)
= − sign

(
b cos a − KR

2

)
Proof of Lemma 10. We can write the price curve with no storage as

pNS(t) = A − R sin
(
t − φ

)
, R =

√
ϑ2

sin + ϑ2
cos, φ = arctan

(
ϑcos
ϑsin

)
,

with

ϑsin = b − 1
2

(
K+ cos a+ + K− cos a−

)
, ϑcos = 1

2

(
K+ sin a+ + K− sin a−

)
.

Let ∆ := a−−a+. For i ∈ {+, −} define Si := ϑsin cos ai−ϑcos sin ai. A short computation
gives

S+ = b cos a+ − K+

2 − K−

2 cos ∆, S− = b cos a− − K−

2 − K+

2 cos ∆.

Since ρ(pNS, ωiKi) = Si/R, the sign of the correlation matches the sign of Si.

Necessity. If ρ(pNS, ω+K+) > 0 and ρ(pNS, ω−K−) < 0, then S+ > 0 > S−. From
S+ > 0 we get 2b cos a+ > K+ + K− cos ∆.
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Sufficiency. Assume 2b cos a+ > K+ + K− cos ∆. Then S+ > 0. Moreover, using
K+ < 2b cos a+ − K− cos ∆ in S−,

S− < b cos a− − K−

2 − 1
2
(
2b cos a+ − K− cos ∆

)
cos ∆

= b
(
cos a− − cos a+ cos ∆

)
− K−

2
(
1 − cos2 ∆

)
= − b sin a+ sin ∆ − K−

2 sin2 ∆ < 0,

with strict inequality unless sin a+ = 0 = sin ∆. Hence ρ(pNS, ω+K+) > 0 and ρ(pNS, ω−K−) <

0.

Equal capacities. Setting K+ = K− = KR gives 2b cos a+ > 2KR cos2(∆/2), i.e., KR <
2b cos a+

1 + cos ∆ ·

Proof of Proposition 8. It follows the same steps as the proof of Proposition 7, with
the difference that the sign of the derivatives depends on Si.

B Investment Subsidies

In the baseline model, we discuss how the stringency of technology mandates affects
the investment subsidies needed for firms to break even when they invest to meet the
mandate. In this section, we take the mirror perspective and analyze the overall effect
of investment subsidies on long-run capacity investment, as shown next:

Proposition 9 Let i, j ∈ {S, R} and i ̸= j, and use ηi to denote a per-unit of capacity
subsidy to technology i. (i) A higher subsidy ηi increases the equilibrium capacity of
technology i, i.e.,

dK∗
i

dηi

> 0.

(ii) A higher subsidy ηi reduces the equilibrium capacity of technology j if and only if
prices and renewables correlate positively, i.e.,

dK∗
j

dηi

< 0 ⇔ α = 1 and K∗
R < 2b.

Subsiding one technology increases its profitability, which induces higher investments.
However, whether this strengthens or weakens the equilibrium investment of the other
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technology depends on whether renewables and storage are substitutes or complements
(Proposition 1).

When they are strategic complements, promoting investments in one technology
through investment subsidies always comes with the additional benefit of promoting
investments in the other technology. In particular, the entry of storage (renewable)
assets opens up profitable opportunities for renewable (storage) due to the negative
correlation between renewables and prices.

Otherwise, promoting renewables or storage too early acts as a barrier to the initial
deployment of the other technology due to the positive correlation between prices and
renewable production. In this case, storage subsidies induce renewables to exit as they
reduce their profitability. Conversely, mandating or subsidizing investments in renew-
ables brings the market closer to the situation where both technologies complement each
other. In particular, a large enough renewable investment subsidy would make storage
firms exit the market (or make existing storage capacity idle) until renewable capacity
reaches the critical mass KR = 2b. From that point onward, the new renewable in-
vestments would gradually increase arbitrage profits and encourage the entry of storage
firms.

Likewise, when renewables and storage are strategic complements, storage and re-
newable investment subsidies work at cross purposes. It is more effective to subsidize
renewables until the critical mass KR = 2b is reached than to support both. The reason
is that the positive direct effect of the renewables subsidy ηR on renewable investments
is counteracted by the negative indirect impact that the storage subsidy ηS has on KR

(by incentivising storage investment).

Proof of Proposition 9

The free entry condition implies zero profits so that equilibrium investment (K∗
S, K∗

R) is
implicitly given by:

F (K∗
S, K∗

R) = 2|b − αK∗
R/2| sin τ − CS(K∗

S)
K∗

S

+ ηS = 0 (B.1)

H(K∗
S, K∗

R) =
(
θ − K∗

R/2)π + α
(
b − αK∗

R/2
)(

τ + sin τ cos τ
)

− CR(K∗
R)

K∗
R

+ ηR = 0

(B.2)

with τ being a function of K∗
S and K∗

R implicitly given by equation (8).
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We are interested in signing the following expressions:

dK∗
i (ηS, ηR)
dηi

∣∣∣∣∣
(K∗

S ,K∗
R)

and
dK∗

j (ηS, ηR)
dηi

∣∣∣∣∣
(K∗

S ,K∗
R)

For this purpose, given that equations (B.1) and (B.2) are continuously differentiable in
a neighborhood of any equilibrium (K∗

S, K∗
R) (except for K∗

R = 2b when α = 1), we can
rely on the Implicit Function Theorem (IFT). Totally differentiating equations (B.1)
and (B.2), we get:

dF = dKSFKS
+ dKRFKR

+ dηSFηS
= 0 (B.3)

dH = dKSHKS
+ dKRHKR

+ dηRHηR
= 0 (B.4)

where we have taken the partial derivatives with respect to the subscripts of F and H.
Setting dηR = 0 and dividing equations (B.3) and (B.4) by dηS, we get the following
system (in matrix form):


FKS

FKR

HKS
HKR




dK∗
S(ηS, ηR)
dηS

dK∗
R(ηS, ηR)
dηS


(K∗

S ,K∗
R)

=


−FηS

0



Similarly, setting dηS = 0 in equations (B.3) and (B.4), and dividing by dηR we get the
following system (in matrix form):


FKS

FKR

HKS
HKR




dK∗
S(ηS, ηR)
dηR

dK∗
R(ηS, ηR)
dηR


(K∗

S ,K∗
R)

=


0

−HηR



As we will later show, the Jacobian is non-singular at equilibrium, so we can apply the
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IFT and Cramer’s rule to obtain the following expressions of interest:

dK∗
S(ηS, ηR)
dηS

∣∣∣∣∣
(K∗

S ,K∗
R)

= −HKR

FKS
HKR

− FKR
HKS

(B.5)

dK∗
R(ηS, ηR)
dηS

∣∣∣∣∣
(K∗

S ,K∗
R)

= HKS

FKS
HKR

− FKR
HKS

(B.6)

dK∗
S(ηS, ηR)
dηR

∣∣∣∣∣
(K∗

S ,K∗
R)

= FKR

FKS
HKR

− FKR
HKS

(B.7)

dK∗
R(ηS, ηR)
dηR

∣∣∣∣∣
(K∗

S ,K∗
R)

= −FKS

FKS
HKR

− FKR
HKS

(B.8)

where we have used the fact that FηS
= HηR

= 1.
Recall that, for all KS and all KR (except for KR = 2b if α = 1):

dτ(KS, KR)
dKS

= −∂g/∂KS

∂g/∂τ
= (−1)

2|b − αKR/2|(π/2 − τ) cos τ
< 0.

dτ(KS, KR)
dKR

= −∂g/∂KR

∂g/∂τ
= − sign(2b − αKR)αKS

4(b − αKR/2)2(π/2 − τ) cos τ
·

Using these expressions, we can obtain the following partial derivatives, which we assess
for τ ∈ [0, π/2):

FKS
= (−1)

π/2 − τ
− C ′

S(K∗
S)K∗

S − C(K∗
S)

(K∗
S)2 < 0.

FKR
= − α sign(2b − αK∗

R) cos τ

π/2 − τ

HKS
= − α sign(2b − αK∗

R) cos τ

π/2 − τ

HKR
=

−
[
π + τ − sin τ cos τ

]
2 − (cos τ)2

π/2 − τ
− C ′

R(K∗
R)K∗

R − C(K∗
R)

(K∗
R)2 < 0.

with τ implicitly given by equation (8). To determine the sign FKS
and HKR

, we have
relied on the convexity of the cost function, which implies C

′(Ki) > C(Ki)/Ki for
I = {S, R}. In turn, the partial derivatives FKR

and HKS
are negative if and only if

α = 1 and K < 2b. It remains to show that the Jacobian is non-singular. Its determinant
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is: ∣∣∣∣∣∣FKS
FKR

HKS
HKR

∣∣∣∣∣∣ =π + τ − cos τ sin τ

2
(
π/2 − τ

) + C ′
R(K∗

R)K∗
R − C(K∗

R)(
K∗

R

)2
1

2
(
π/2 − τ

)
+ C ′

S(K∗
S)K∗

S − C(K∗
S)(

K∗
S

)2

(−
[
π + τ − sin τ cos τ

]
2 − (cos τ)2

π/2 − τ

)

+ C ′
S(K∗

S)K∗
S − C(K∗

S)(
K∗

S

)2
C ′

R(K∗
R)K∗

R − C(K∗
R)(

K∗
R

)2

with the four terms being positive given the convexity of the cost functions. Using
expressions (B.5) to (B.8) and the signs of the partial derivatives characterized above,
it follows that

dK∗
i (ηS, ηR)
dηi

∣∣∣∣∣
(K∗

S ,K∗
R)

> 0,

dK∗
j (ηS, ηR)
dηi

∣∣∣∣∣
(K∗

S ,K∗
R)

< 0 ⇔ α = 1 and K∗
R < 2b.

C Simulations

We model equilibrium market outcomes in the Spanish electricity market over 8, 760
periods (hours), both under competitive bidding as well as under strategic bidding.

In each period t, consumer demand is denoted by D(t). It is assumed to be perfectly
inelastic up to a price cap (set at 500 €/MWh for the baseline simulations). Electricity
is generated at different plants, each with an installed capacity of ki and a constant
operating cost. This cost, denoted by cit, varies across plants and time (indexed by date
t) due to differences in technology and input costs.

The marginal cost of electricity generation depends on a plant’s heat rate (energy
efficiency), emission rate, and variable operation and maintenance costs. For thermal
plants, input costs (e.g., gas, coal, CO2 allowances) fluctuate daily. In contrast, hydro
and renewable plants have zero fuel costs, with marginal costs driven solely by operation
and maintenance costs, as their inputs are freely available and emission-free.

Each plant operates subject to an hourly capacity factor ωi(t) ∈ [0, 1], which deter-
mines the maximum possible generation at time t. Thus, generation qi(t) from plant i

must satisfy qi(t) ≤ ωi(t)ki. For thermal technologies, ωi(t) = 0.9 for all t when the plant
is not under maintenance, while for intermittent renewable technologies, it takes values
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between 0 and 1 reflecting the hourly and monthly seasonality of their availability.
Electricity can be shifted across time through batteries. Let qB(t) and qS(t) denote

energy charged and discharged by battery operators. The stock of energy in the battery
S(t) evolves over time based on charging and discharging, following the equation:

S(t) = S(t − 1) + ηqB(t) − qS(t)

where η ∈ [0, 1] captures the round-trip efficiency of the battery. The battery’s state
must remain within its capacity limits, such that 0 ≤ St ≤ KS, where KS is the amount
of storage capacity in the market. Batteries have a ζ-hour duration, which implies that it
takes ζ hours to discharge the battery fully at its rated power capacity. Therefore, power
constraints (i.e., maximum amount that it can be charged and discharged at period t)
are 0 ≤ qj(t) ≤ KS/ζ.

Battery operators are assumed to have perfect foresight and engage in price arbitrage
within each natural day, subject to charge/discharge constraints and capacity availabil-
ity.40 Finally, market clearing requires that supply matches demand on an hourly basis.

Given our assumptions about perfect foresight and price-taking behavior of storage
facilities, we can compute the competitive equilibrium using the social planner’s prob-
lem (see the figures representing the competitive equilibrium below). Since demand is
perfectly inelastic, the planner minimizes total generation costs subject to the relevant
constraints. Therefore, for each 24 hour cycle, the problem is:

min
qi(t), qB(t), qS(t)

8,760∑
t=1

∑
i

citqi(t)

s.t. D(t) = qS(t) − qB(t) +
∑

i

qi(t), ∀t

S(t) = S(t − 1) + ηqB(t) − qS(t), ∀t

0 ≤ S(t) ≤ KS, ∀t

0 ≤ qj(t) ≤ KS/ζ, for j = {B, S} and ∀t

S(24) = S(0)

0 ≤ qi(t) ≤ ωi(t)Ki, ∀i, t,

Under strategic bidding, we assume that there is a single dominant firm, owning 25%
40To ensure this, we impose that the energy level at the start and end of each daily cycle must be

equal. Given the characteristics of most market batteries, allowing for longer optimization horizons
would not significantly alter results but would increase computational complexity.

19



of each generation plant. This firm chooses its production (or, equivalently, its price) so
as to maximize profits over its residual demand, taking as given the competitive behavior
of all other firms.

We use data from a representative year, 2019, prior to the pandemic and the energy
crisis. Hourly demand, hourly renewable availability, and installed capacity for each
technology (Table 1) are sourced from the Spanish System Operator (REE). Our model
incorporates all technologies present in the Spanish electricity market, including con-
ventional generation (nuclear, hydro, coal, and gas-fired plants) and renewable sources
(solar photovoltaic, solar thermal, and wind).

We obtain daily gas prices from the Spanish Gas Exchange (MIBGAS), as well as
CO2 EU allowances and daily coal prices from Bloomberg. Additionally, we have de-
tailed information on the heat rate and emission rates of each plant. These values align
with standard benchmarks for each technology while capturing plant-specific variations,
such as differences due to vintage or, in the case of coal plants, other operational char-
acteristics.41

For batteries, we assume a round-trip efficiency of η = 0.9 and a duration of ζ = 4
hours. Hydro generation is allocated to shave demand peaks (net of renewable genera-
tion), helping to minimize overall production costs.

For the counterfactual scenarios, we adopt the assumptions of the Spanish National
Energy and Climate Plan for 2030 regarding the energy mix and demand growth fore-
casts. We leave all other parameters unchanged – including the hourly availability
profiles of those technologies.

C.1 Additional Simulations

The baseline simulations assume strategic bidding by a dominant firm that owns 25% of
all generation capacity. For completeness, we replicate the main figures below under the
alternative assumption of competitive bidding by all firms. As can be seen, equilibrium
prices are lower under competitive bidding; however, the overall price patterns and the
timing of storage decisions remain qualitatively similar to those in the baseline model
with strategic bidding by a dominant firm.

41For more details on the computation of marginal costs, see Fabra and Imelda (2023).
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Figure C.1: Market prices, renewables generation, and storage decisions (competitive
firms)
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Notes: This figure replicates Figure 4 in the main text assuming perfectly competitive behavior.
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Figure C.2: Capacity factors and profits of energy storage (competitive firms)
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Figure C.3: Captured prices by renewables and storage (competitive firms)
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Last, as mentioned above, the baseline simulations assume a price cap equal to
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500€/MWh. To show that the main results remain qualitatively similar under alternative
values of the price cap, Figure C.4 replicates Figure 4 in the main text, under strategic
bidding by the dominant firm but now with a 1,000 €/MWh price cap.

D Additional Results

D.1 Predictable changes in demand and renewable energy avail-
ability

The following table presents the results of regressions of the realized values of key out-
come variables (electricity demand, solar generation, wind generation, and net demand,
i.e., demand net of solar and wind generation) on their respective day-ahead forecasts.
The analysis is based on hourly data from the Spanish electricity market spanning Jan-
uary 2019 to December 2024, obtained from (https://www.esios.ree.es/es).

Table D.1: Regression Results: Realized vs Forecast Demand and Renewables
Demand Solar Wind Net Demand

Intercept 15.80*** -43.57*** -36.72*** -77.65***
(5.6965) (2.1956) (3.7848) (8.1288)

Day-ahead forecast 0.999*** 1.013*** 1.012*** 1.002***
(0.0002) (0.0004) (0.0005) (0.0004)

R2 0.998 0.993 0.987 0.990
Observations 52,608 52,587 52,588 52,567

Notes: Standard errors in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

The consistently high R2 values across specifications indicate that a substantial share of
the variation in these outcomes is explained by their predictable, deterministic compo-
nents, highlighting the limited role of stochastic variation at the hourly level.

D.2 Intraday variation dominates demand and renewable sup-
ply swings

We estimate a parsimonious calendar fixed–effects specification on six years of hourly
Spanish system data. Our goal is to decompose the hourly variation of three key se-
ries: realized electricity demand, solar generation, and (onshore) wind generation. The
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Figure C.4: Market prices, renewables generation, and storage decisions
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Table D.2: Adjusted R2 from calendar fixed–effects regressions
Series Hour-only R2 Full R2 (H+W+M+Y) Hour/ Full
Demand 0.45 0.77 0.58
Solar 0.65 0.78 0.84
Wind 0.01 0.42 0.01

raw series are drawn from the ENTSO-E transparency platform for January 2019 to
December 2024.42 For each outcome yt, we run:

yt =
23∑

h=1
ah 1{Hour = h}+

6∑
d=1

βd 1{Day = d}+
11∑

m=1
γm 1{Month = m}+

5∑
y=1

δy 1{Year=y}+εt,

where the hour dummies isolate the diurnal cycle, weekday dummies capture short-term
work-holiday cycles, month dummies capture more seasonal swings, and year dummies
capture structural shifts (e.g., solar build-out). We estimate the model by OLS with
Newey–West standard errors to control for serial correlation, and we compare specifica-
tions via the adjusted R2.

The resulting variance decomposition in Table D.2 shows that hour-of-day effects
alone account for 58% of calendar-explainable variation in demand and for 84% in solar
output, suggesting that the fluctuations storage operators face are mostly driven by
predictable intraday patterns rather than by higher-frequency noise or inter-day shocks.
Note that solar is almost entirely diurnal, leaving little room for seasonal variation and
for stochastic shocks beyond cloud cover. In contrast, wind power is weakly linked to
the clock but strongly seasonal. These results underscore how Spanish hourly system
dynamics are substantially driven by diurnal patterns.

For additional evidence, empirical studies and reports consistently show that a large
share of the variability in electricity demand and renewable energy production occurs
within the day, rather than across days or weeks, especially for solar production. The
US Energy Information Administration highlights that demand follows a strong diurnal
pattern, with demand typically peaking during daytime and falling at night (U.S. Energy
Information Administration, 2020). Grid operators worldwide plan around a recurring
daily load curve.

42ENTSO-E sources the data from Red Eléctrica de España’s ESIOS database.
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Figure D.1: Distribution of daily discharged-to-charged energy ratios for Spanish
utility-scale batteries, 18 Nov 2024–22 Jul 2025. The median is 0.86 and the

inter-quartile range is 0.78–0.92.

D.3 Batteries’ daily cycle

We have downloaded hourly charge and discharge flows for every utility-scale battery
connected to the Spanish transmission grid from Red Eléctrica de España on its public
data portal ESIOS. We have extracted the files from November 2024 to July 2025 – prior
data is not available.

For every calendar day in the sample, we sum all the megawatt-hours that Spain’s
utility-scale batteries charged and all the megawatt-hours they released. To assess
whether the storage cycle occurs within the same 24-hour window, we compared the
two by dividing energy discharged by energy charged within the day, producing a single
ratio for each day. Values between 0.7 and 0.9 indicate that nearly everything charged
was discharged before midnight,43 while lower ratios indicate that some of the stored
energy waited until the following day (or later) to be released. Finally, we plotted all
of those daily ratios in a histogram to reveal the fleet’s typical operating pattern at a
glance.44

We find that the median battery releases 86% of the energy it absorbs on the same
day. The 25th–75th percentile band is 0.78–0.92, and fewer than 3% of days fall below
0.65. Hence, Spanish grid-scale batteries operate on (almost) one full cycle per 24 hours,

43This is because there are some energy losses along the way (round-trip efficiency), which are usually
in the range of 10 − 30%.

44The ratio of energy discharged over energy charged over the whole sample period is equal to 0.85,
a number in line with the standard round-trip efficiency for batteries.
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aligning with their 4–6 h energy capacity and the well-known mid-day solar surplus vs.
evening peak demand pattern. 45

Because storage arbitrage and balancing activity overwhelmingly close within the
day, a diurnal net-load model captures the dominant economics of battery dispatch.
Multi-day optimisation would add complexity without materially changing our main
results.

45Comparable daily cycling behaviour is documented for California’s fleet (CAISO, 2024; Lamp and
Samano, 2022) and for the batteries in the Australian NEM (Rangarajan et al., 2023).
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