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Abstract

As interest in the distributional effects of climate policies gains prominence, designing elec-

tricity tariffs that are both efficient and equitable becomes critical. Efficiency often favors the

shift from time-invariant to time-of-use (ToU) or real-time prices (RTP), but this transition

may have distributional implications. We develop a framework to assess the implications and

the channels through which distributional impacts manifest. Central to our approach is a novel

method that infers individual household income by combining zip-code-level income data with

household-level electricity consumption. We demonstrate the value of this method in the Span-

ish context. First, we show that using more granular estimates of income has an impact on the

distributional assessment of electricity tariffs. Second, we find that the potential distributional

impact of RTP is very modest compared to the impact of ToU.
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1 Introduction

Quantifying the distributional effects of climate policies is becoming increasingly central to both

academic research (Deryugina et al., 2019) and policy discussions (OECD, 2024). Beyond envi-

ronmental justice, equity concerns can hinder the political and social support necessary for imple-

menting efficient climate policies. Therefore, understanding how policy impacts vary across income

levels is crucial for designing effective and equitable measures that are socially acceptable (Fabra

and Reguant, 2024). However, despite growing interest in this area, the lack of individual-level

income data often limits researchers’ ability to make precise assessments.

In response to this data limitation, we propose a novel method to infer individual-level income

in contexts where researchers have access to detailed socioeconomic data but lack precise household

income information.1 Our method fills this gap by offering a robust approach to estimate income at

the individual level, which is particularly useful for distributional analyses of climate policies, such

as carbon pricing (Chanut, 2021). Beyond climate policy, this method has wider applications in

fields such as public economics (Chetty et al., 2023), education (Bleemer and Mehta, 2022), finance

(Gross et al., 2021), and labor economics (Gustman and Steinmeier, 2000).2

We demonstrate the utility of our method by analyzing the distributional effects of alternative

electricity pricing policies, particularly the shift from time-invariant to Real-Time (RTP) and Time-

of-Use (ToU) pricing. Economists have long advocated for RTP as an efficient policy tool (see,

e.g., Borenstein (2005) and Borenstein and Holland (2005)), but its adoption has been slowed by

concerns about potential adverse distributional impacts across households (Joskow and Wolfram,

2012).3 ToU pricing is more widely adopted, though its desirability from an efficiency standpoint

remains debated. While it does not deliver all the benefits associated with fully dynamic pricing,

its predictability and salience may elicit a stronger demand response (see Fabra et al. (2021) and

Enrich et al. (2022)).

Our empirical analysis leverages data from the Spanish electricity market, the only country

where RTP has been broadly implemented as the default option for households, and where ToU

has become compulsory.4 Our analysis, based on hourly smart meter data from more than a million

1In many cases, databases contain individual-level data (e.g., on consumption, health, education) but, due to
privacy concerns, only provide zip code-level information. This prevents researchers from matching households to
income data at finer levels of aggregation (e.g., census tracts). Similarly, while household characteristics are well-
documented in Census data, some countries only offer detailed income statistics by zip code.

2For example, Chetty et al. (2023) examine the heterogeneous impacts of COVID-19 on household spending
by using median household income at the zip code level to proxy for cardholder income. Similarly, Bleemer and
Mehta (2022) use zip code-based income data to quantify the wage return for majoring in economics. Gross et al.
(2021) use zip code median income to analyze how bankruptcy laws affect the cost of credit. Lastly, Gustman and
Steinmeier (2000) study retirement decisions using wage data to estimate household income, relying on proxy methods
in years when survey data are unavailable. In all these cases, our method could improve the understanding of income
heterogeneity within zip codes, allowing for richer distributional analyses.

3Levinson and Silva (2022) show how preferences for income redistribution influence the design of the electricity
pricing scheme.

4In some countries, such as Norway and New Zealand, RTP is offered by competitive retailers, but it is not the
default option. For instance, Borenstein (2013) notes: “I’m aware of no place in the U.S. where time-sensitive rates
are the default for residential customers.” Similarly, the European Commission (2009) states, “The case of Spain with
a regulated default dynamic price contract is unique. Pébereau and Remmy (2023) explore the barriers to adopting
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Spanish households over 18 months, offers a highly representative assessment of the population-wide

impacts of RTP and ToU.

Although smart meter consumption data are highly detailed, there is no household-level income

data available, which is crucial for assessing the distributional effects of electricity pricing policies.

The standard approach (i.e., assuming all households within a zip code share the same income

distribution based on national quintiles) would suggest that the impacts of RTP and ToU are

either uncorrelated with income or only weakly so. However, this method overlooks significant

within-zip-code heterogeneity, potentially introducing a bias (Borenstein, 2012). By accounting for

within-zip-code heterogeneity, our method for estimating household income allows us to uncover

potential distributional effects that would otherwise remain hidden.

Approach To estimate household-level income data, our proposed method combines household

electricity consumption data with zip code income distributions. First, we apply flexible classifica-

tion algorithms to group households into representative types based on their electricity consumption

profiles. Additionally, we categorize households by their contracted power, which correlates strongly

with income. Once households are classified into types, we estimate each household’s income dis-

tribution as a function of its type, individual characteristics, and zip code attributes. We do so by

imposing that the inferred distribution of income based on our household types, aggregated at the

zip code level, matches the observed income distribution at the zip code level using a generalized

method of moments (GMM).

The critical assumption for identifying the impact of household types on income is that the set

of potential types is shared across zip codes within a group of nearby zip codes.5 This assump-

tion enables us to estimate the income distribution for each type that rationalizes the observed

income distributions at the zip code level. We then derive household-level income distributions

by combining the type-level income distribution with the household’s assigned type. Although

this identification approach is non-parametric, we also implement a semi-parametric version that

incorporates functional form assumptions on how types, individual characteristics, and zip code

demographics influence the distribution of income.

Since the household classification algorithm is sensitive to choices made by the researcher, we

conduct three types of robustness checks to validate our results. First, we perform Monte Carlo sim-

ulations. Second, we cross-validate our predictions by leaving some zip codes out of the estimation

process and then predicting their outcomes. Third, we compare our inferred consumption-income

patterns with data from the Consumption Expenditure Survey (CEX).6 As an additional valida-

tion, we demonstrate that, as expected, contracted power is strongly and positively correlated with

our household income estimates. In contrast, assigning each household to the observed income

RTP in New Zealand.
5Not all types need to be present in every zip code within a group, as the probability of a specific type in a given

zip code could be zero.
6Ideally, one would like to have income data at the individual level to compare the performance of our proposed

method with only zip code level distribution data versus the performance using the individual-level data. However,
as in most cases in practice, individual income data is not available, which justifies our contribution.
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distribution of its zip code would mask this correlation, underscoring the value of our method in

achieving more accurate predictions.

Main Findings We apply our proposed method to assess the distributional implications of tran-

sitioning from time-invariant electricity prices to Real-Time Pricing (RTP) and Time-of-Use (ToU)

pricing in Spain. The results indicate that the switch to RTP has very modest – almost negligible

– distributional effects, at least within the time frame covered by our analysis. In contrast, the

adoption of ToU pricing yields progressive distributional outcomes. Specifically, the shift reduces

electricity bills for low-income households by an average of 0.6 e/month, while increasing bills

by approximately 0.9 e/month for households in the highest income quintile. Interestingly, the

distributional effects of ToU would remain hidden if we did not account for within-zip-code income

heterogeneity.

Even though the bill impacts are modest, RTP can pose challenges for lower-income households

facing tight monthly budgets (Jack and Smith (2020); Berkouwer and Dean (2022)). Our results

show that bill volatility increases for all income groups, with the largest bill volatility affecting the

lowest quintile. In contrast, ToU mitigates bill volatility, particularly for the low-income group.

These findings are driven by differences in household consumption patterns. High-income house-

holds tend to consume disproportionately more during peak hours, which explains the progressive

distributional effects of the switch to ToU pricing. In contrast, low-income households exhibit

higher electricity consumption during the winter months. While this seasonal pattern does not

influence the distributional consequences of ToU – since ToU tariffs remain fixed across months

– it does impact the distributional effects of RTP, as wholesale electricity prices vary seasonally.

Specifically, a transition from annual rates to monthly rates is regressive: low-income households

face higher costs during winter months. However, this effect is fully offset by (within-month) price

variation, as high-income households incur higher costs during peak hours when they consume

relatively more. This effect also helps explain the progressive nature of ToU pricing.

We identify two primary channels driving household consumption patterns: heating, ventilation,

and air conditioning (HVAC) usage and household location. Electric heating (EH) and air condi-

tioning (AC), which together account for nearly 30% of a typical household’s annual consumption,

vary significantly across regions based on local climate and gas infrastructure availability. Addi-

tionally, EH is negatively correlated with income, while AC is positively correlated.7 Given that

electricity prices are substantially higher in winter and lower in summer, the reliance on electric

heating (EH) by low-income households and on air conditioning (AC) by high-income households

explains the regressive effects of exposing households to monthly price variation under RTP (but

not under ToU). This seasonal component offsets the progressive effects of within-month price

variation, which are present in both RTP and ToU.

Arguably, these findings are location-specific, as they depend on customer equipment, demand

patterns, and the nature of electricity supply, all of which vary across countries and over time.

7In Spain, older buildings often lack formal heating systems, and inefficient electric heaters are used, contributing
to the negative income correlation.
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Beyond assessing the distributional implications of RTP and ToU in the Spanish context, our

contribution lies in disentangling the underlying channels and proposing a novel methodology to

quantify them.

The structure of our paper is as follows. We next discuss the related literature. Section 3

describes the background of the Spanish RTP system and provides an overview of the data. Section

4 describes the methodology used to infer individual household income. Section 5 quantifies the

distributional implications of RTP and ToU, and Section 6 explores the channels. Last, Section 7

concludes.

2 Related Literature

Our paper contributes to two strands of the literature. First, it advances the study of alternative

electricity pricing policies by examining their distributional implications across different income

groups. Second, it contributes to the methodological literature on inference and clustering by

proposing a novel approach for inferring household-level income using consumption data and zip

code-level information.

The literature on dynamic pricing has extensively documented its efficiency properties as it

creates incentives for energy conservation during high-priced hours and encourages load shifting

from high-priced to low-priced periods (see Jessoe and Rapson (2014), Burger et al. (2019), Faruqui

et al. (2009), Wolak (2011), Allcott (2011), among others). Demand response improves investment

efficiency (Borenstein, 2005), mitigates market power (Poletti and Wright, 2020), and may even

generate positive environmental impacts (Holland and Mansur, 2008).8 Despite these benefits, RTP

adoption has largely been confined to industrial consumers (Blonz, 2022).

Regarding the distributional impacts of dynamic pricing, Borenstein (2012) shows that Critical

Peak Pricing (CPP),9 perhaps the most widely used form of dynamic pricing, would have modest

impacts on most residential bills. Specifically, low-consumption households would see their bills

decline, high-consumption households would face bill increases, and low-income households would

experience almost no change. In contrast, using results from pilot programs with voluntary partic-

ipation, Faruqui et al. (2010) find that low-income households could benefit from CPP due to their

flatter consumption profiles and greater responsiveness to dynamic prices.

Fewer studies have focused on the distributional effects of real-time pricing (RTP). An early

exception is Horowitz and Lave (2014), who examine the shift from time-invariant pricing to RTP

using hourly load data from Commonwealth Edison residential households. They find that larger

households would save money under RTP, while smaller and disproportionately low-income house-

holds would lose money. More recently, Leslie et al. (2024) explored the distributional effects of

8Additionally, Schittekatte et al. (2024) have compared the efficiency of Time-Of-Use pricing (ToU) and dynamic
pricing (CPP) in markets with high renewable penetration, revealing significant differences in performance. They
advocate for the combination of the two.

9CPP combines standard fixed rates (or ToU) for most of the year with occasional price surges (e.g., 10–15 times
annually) during periods of tight supply-demand margins.
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RTP in Victoria, Australia, matching substation electricity consumption data with demographic

information. Their results suggest that RTP would primarily benefit households in areas with low

house prices, high levels of renters, and elderly residents.

Borenstein (2007) simulates the distributional impacts of an opt-in RTP system among indus-

trial and commercial households in Southern California. His research reveals that if households

switched to RTP and exhibited price elasticities of -0.1, their surplus would increase. However, a

significant portion (38-44%) would still be worse off under RTP. Only with much higher elasticities

would these households experience net benefits from the transition to RTP.

While our findings align with prior research, we emphasize that the effects on low-income

households vary significantly based on factors such as the type of time-invariant pricing (monthly

vs. annual), consumption patterns, HVAC systems, and geographical location. By identifying these

channels, our analysis offers insights that can help other jurisdictions anticipate and mitigate the

regressive impacts of RTP before its implementation. Crucially, our reliance on household-level

income estimates, derived from real-world data of users defaulted into RTP, allows us to overcome

the data limitations faced by previous studies.

From a methodological perspective, our paper contributes to the literature that has developed

methods of clustering observations, which we combine with the idea of backing out individual

primitives (income) from outcome variables, as in demand estimation models (Berry et al. (2004),

Fox et al. (2011), and Bajari et al. (2007)).10

The literature on finite mixture models proposes a series of methods for inference and clustering.

While most papers use a parametric approach with normal distribution assumptions (McLachlan

et al. (2019)), Bonhomme et al. (2016) propose a nonparametric approach that uses repeated data

to obtain identification power. The literature on discrete heterogeneity using clustering methods

models grouped-heterogeneity differently from the finite-mixture literature. Bonhomme and Man-

resa (2015) propose a grouped fixed-effect (GFE) estimator that captures time-varying discrete

heterogeneity through clustering methods.

Bonhomme et al. (2022) propose a two-step grouped fixed-effects estimator that first uses kmeans

clustering methods and then estimates a model with group fixed-effects. They show the advantage

of GFE over the classic FE model and prove the asymptotic properties of the GFE estimator with

panel data.Additionally, they show that these asymptotic properties hold even with continuous

heterogeneity, emphasizing that discrete heterogeneity serves as a dimension reduction tool rather

than a substantive assumption about unobserved population characteristics. While our first step is

similar to Bonhomme et al. (2022) in that we both use individual-level moments to identify groups,

in our second step we instead match the aggregate moment of the primitives (the zip code income

distribution) and identify group-specific income distributions.

We also contribute to the literature on demand system estimation with partial microdata. While

we have rich individual-level consumption data and repeated observations for every household, we

10The energy engineering literature (e.g., Haben et al. (2015), Al-Wakeel et al. (2017), Melzi et al. (2015), and
Tureczek and Nielsen (2017)) has also used machine learning models to classify electricity load curves but, as far as
we are aware, it has not used this approach to infer household income.
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do not have household-level income information, preventing us from using micro-moments, as in

Berry et al. (2004).

A classic structural approach would be to estimate a parametric individual consumption function

with income as a covariate. Market-level demographics could help identify the relationship between

income and consumption, as first shown in Berry et al. (1995). However, there are two limitations.

First, the inversion over individual hourly consumption data is computationally burdensome. We

simplify this process using a two-step estimator, which reduces the second step’s computational

burden to that of a constrained OLS estimator. Similar to the fixed-grid nonparametric approach

(Fox et al. (2011) and Bajari et al. (2007)), our purpose of discretizing household types is to simplify

the computation and convert a big structural model into an OLS-style constrained estimator.

Specifying a parametric model for electricity consumption is complex due to the heterogeneous

relationship between income and electricity consumption.11 Rather than fully leveraging the high-

dimensional repeated observations for each individual, our proposed two-step estimator allows for

household-group heterogeneity without imposing a parametric functional form on the relationship

between group characteristics and outcomes (e.g., electricity consumption).

3 Background and Data

The focus of our application is to quantify the distributional effects of alternative electricity pricing

rules – specifically, Real-Time Pricing (RTP) and Time-of-Use (ToU) – relative to time-invariant

pricing. In this section, we describe the data used to infer household income, which includes

hourly electricity consumption, contracted power, and demographic characteristics. We also provide

background on the relevant pricing mechanisms within the Spanish electricity market.

3.1 Hourly Electricity Consumption

Our dataset includes information on nearly four million Spanish households, covering the period

from January 1, 2016, to May 31, 2017.12 They are distributed across various regions of the country,

but most of them are located in Madrid.13 After filtering out outliers (specifically, households with

excessive zero consumption observations or missing zip code data)14 and excluding households

outside the regulated utility’s service areas,15 we retain a final sample of 1,303,350 households

spread across 750 zip codes. For data quality reasons, we also exclude observations from December

2016 and May 2017, leaving us with 15 months of data (January to November 2016, and January

to April 2017).16

11The Appendix presents evidence and details on the parametric estimation.
12This data was provided by Naturgy, the third largest utility company in Spain.
13The geographic distribution of households is illustrated in the Appendix in Figure A.2
14The outlier removal algorithm excludes a household if more than 25% of its consumption observations are zero,

or if more than 5% of observations are null.
15The default provider in each region is responsible for offering the default RTP tariff, so households outside a

utility’s regulated territory cannot participate in the RTP scheme.
16The smart meter data lacks nearly all consumption data for December 2016, and is very incomplete for May

2017.
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Additionally, the dataset provides information on each household’s access tariff, contracted

power, and postal code. Contracted power, measured in kW, is the maximum consumption allowed

at any point in time.17 Since households pay a fixed monthly fee as a function of their contracted

power, which can be between 20 and 35% of their bill on average, they have incentives to contract

it according to their electricity needs and their willingness to pay to avoid being tripped if they go

over the limit. For the purposes of our estimation, this is an important variable, as it is observed

for each household, and it tends to be positively correlated with income. Households with high

income tend to live in larger houses and have a higher willingness to pay to avoid the inconvenience

of power limits.

3.2 Demographic Data

We have also gathered demographic data from two sources: the Spanish National Institute of Statis-

tics (INE) and a private data provider, MB Research. The INE provides demographic information

at the census district level, including population, age, gender, education, dwelling types, and in-

come distribution data.18 In contrast, MB Research offers income distribution data specifically for

zip codes.19

While demographic data at the zip code level offer useful information, we find them inadequate

for analyzing the distributional impacts of electricity pricing. Specifically, aggregate patterns at

the zip code level fail to capture the micro-level variation. For instance, consumption survey data

(CEX) show that higher-income households tend to report higher electricity consumption (see

Appendix A.4). However, these basic patterns are not reflected when using only aggregate zip code

data, as illustrated in Figure ?? in the Appendix, raising concerns about the informativeness of

relying solely on such demographic data.20

3.3 Electricity Pricing in the Spanish Electricity Market

The Spanish electricity market offers a unique natural experiment to assess the distributional effects

of RTP and ToU, as the default household tariff includes elements of both. Specifically, it features

two volumetric components: (i) an energy charge and (ii) an access fee covering system costs such

as transmission and distribution.21

The energy component is based on hourly wholesale electricity prices, which are uniform across

Spanish households. While households can opt out of RTP by contracting with competitive suppliers

17If households go over the limit, the meter trips and households lose power until they go below the limit.
18Since we have each household’s zip code but not its census district, we match census districts to postal codes and

aggregate the data at the postal code level.
19Appendix A contains a more detailed description of these data sources.
20This issue is particularly pronounced in Spain, where zip codes still contain substantial heterogeneity. Moreover,

the problem is exacerbated by the fact that we are focusing on a single utility, rather than the entire Spanish market.
21This tariff structure applies only to households with peak demand below 10 kW. Those exceeding this threshold

must contract with a competitive retailer, which typically offers time-invariant rates. Households must also have
a smart meter installed. By the end of 2015, nearly 12 million smart meters had been installed in Spain, with
approximately 10.19 million successfully integrated into electricity suppliers’ information and telecommunication
systems. By 2018, all residential households (28.02 million) in Spain had smart meters installed.
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– most of whom offered time-invariant tariffs during our study period – real-time pricing remains

prevalent due to significant inertia in retail choice (Fowlie et al., 2021; Hortaçsu et al., 2017). During

our sample period, the access fee, by default, followed a time-invariant rate, though households

could choose a Time-of-Use (ToU) tariff with lower rates during off-peak hours (e.g., nights and

weekends). In our sample, only 14% of households are enrolled in ToU. More recently, in June

2021, Spain introduced a reform making ToU tariffs mandatory (Enrich et al., 2022). The new

ToU structure is more granular, dividing the day into three periods: peak hours (10:00–14:00 and

18:00–22:00 on weekdays), shoulder hours (8:00–10:00, 14:00–18:00, and 22:00–00:00 on weekdays),

and off-peak hours, which apply to all other times, including weekends and nights. These fees

exhibit significant variation, with the shoulder and off-peak tariffs amounting to 30% and 3% of

the peak tariff, respectively.

Additionally, households have to pay a fixed monthly charge for their contracted power, which

is the maximum consumption allowed at any time. Since it is a function of the household’s size and

installed electrical equipment, it tends to be highly correlated with income. All households pay a

uniform 21% VAT tax in their electricity bills and a 4.864% special tax on electricity consumption.

Figure 1 illustrates the movement of real-time prices over the sample period. Daily, monthly,

and seasonal price fluctuations driven by changes in wholesale demand and supply conditions are

immediately reflected in retail prices.

While one might expect households to adjust their consumption within a day, the difference

between peak and non-peak prices is relatively modest, around 30%, except for the early part of the

sample when the difference reached 80%. This is much smaller than in experimental studies where

peak prices are increased by 200-600% (Harding and Sexton, 2017). Monthly variation, however,

is more pronounced, with winter prices averaging 60-70% higher.

4 Inferring the Household-Level Distribution of Income

To better understand the distributional implications of RTP and ToU, we propose a two-step GMM

approach to improve our estimates of household income distributions.

Let us assume that household hourly electricity consumption during the day (denoted kWhih,

suppressing day index) is determined by a set of variables, such as temperature and seasonal

components for their zip code (denoted xih) and lifestyle (represented by their type θi), plus some

random shocks εih,

kWhih = f(xih, εih|θi). (1)

The proposed GMM methodology follows two steps. In the first step, we classify households

into different types based on their contracted power, their electricity consumption patterns, and

their HVAC ownership, which we infer from their hourly electricity consumption. Based on these

results, we construct the aggregate probabilities of types for each zip code.

Allowing the household’s discrete type θi to be correlated with its income helps us to identify
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Figure 1: Price fluctuations over time (real-time, monthly and annual prices)

how income correlates with electricity consumption while reducing the dimensionality of the income

distribution that we need to estimate. For identification purposes, we allow these types to be shared

across similar geographies.

In the second step, we assume that each type has a fixed distribution of income, which is un-

known but could be a function of covariates. We estimate the probability distribution by exploiting

aggregate moments. The implied income distribution from the types within a zip code should

match the observed zip code income distribution. These aggregate moments help us identify the

probability that each household type belongs to a national quintile.

More formally, our objective is to uncover the income distribution of discrete household types,

θ ∈ Θ = {θ1, . . . , θN}, which can potentially also be a function of covariates. To define the income

distribution, we partition the income domain into K bins, inck ∈ {1, ..,K}, using national income

quintiles (K = 5). For the case without covariates, let ηnk = Pr(inck|θn) denote the discrete

probability of household type θn belonging to quintile k. The goal is to estimate ηnk for each

income bin k and type θn, which we then apply to each household based on their types. This gives

us an expected income distribution. In practice, we also allow these probabilities to depend on

observables.

Next, we explain each step in more detail.

4.1 Step 1: Identifying Household Types

We define household types based on their contracted power, which we observe; their HVAC own-

ership status, which we infer from the correlation of their hourly consumption and temperature

across seasons; and their hourly consumption patterns, which we construct from the smart meter

10



data.

4.1.1 Classification by contracted power

As already explained, households pay a fixed monthly fee based on contracted power, which is

strongly correlated with income. Contracted power can vary from 1 to 10 kW (with 0.1 increments),

but most households in our sample chose 2.5-5 kW. Figure A.1 depicts its distribution. We classify

households into two groups, depending on whether their contracted power is below or above 4

kW. 52% of the households in our sample belong to the low-contracted power group (L), and the

remaining 48% belong to the high-contracted power group (H). Classifying households according

to their contracted power is powerful because we observe it at the household level.

4.1.2 Classification by heating and air conditioning (HVAC) status

As detailed in Appendix B, we identify HVAC status (electric heating and/or air conditioning)

by testing the seasonal correlation of hourly consumption and hourly temperature. Intuitively, we

infer that a household has electric heating if it uses a relatively high amount of electricity during

cold spells. Similarly, we infer that a household has air conditioning if it uses a disproportionately

high amount of power during hot days. To calibrate the thresholds, we use a GMM estimator that

matches the macro moments of the HVAC ownership rate at the regional level. This algorithm

follows and complements the engineering literature that uses high-frequency data to identify HVAC

status.22

Because the classification is based on individual patterns, the output of the procedure is a

household-level indicator on whether the household used AC, electric heating, or both, creating a

generated variable that allows us to classify households individually. Because our sample covers

mostly the northern part of Spain where people rarely use AC, and given that we are limited in the

number of types that we can allow, we focus on electric heating (EH) for the household classification

in the estimation.

4.1.3 Classification by consumption patterns

We perform the estimation separately for each province in our data (nine provinces in total). Within

each province, we classify households based on their observable characteristics and consumption

patterns.

We use a kmeans clustering algorithm to classify households based on moments of their hourly

electricity consumption. In total, 198 variables are generated to capture daily and seasonal con-

sumption patterns for each household. We then apply a kmeans clustering algorithm to all house-

holds in the same province. Our 198 variables include:

• weekday average daily consumption and weekend average daily consumption in kWh;

22See Westermann et al. (2020) and Dyson et al. (2014).
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• mean and standard deviation of hourly consumption share for each of the 24 hours by weekday

and weekend;23

• four variables capturing seasonal patterns in consumption: the ratio of winter consumption

to annual consumption, the ratio of summer consumption to annual consumption, standard

deviation of monthly consumption, and correlation of monthly consumption and the monthly

flat price.

The first two sets of variables (194 variables in total) reflect household electricity consumption

patterns within the day-month, while the remaining four variables reflect seasonality across months.

The former mainly depend on the household’s lifestyle, while the latter are greatly affected by HVAC

ownership.

4.1.4 Final classification

We first classify households according to their individually observable contracted power and their

individually inferred ownership of electric heating: (L,EH), (L,NoEH), (H,EH) and (H,NoEH).

We then use the kmeans clustering algorithm based on the above 198 variables to further classify

households within each of these categories. To avoid small sample issues, we only allow for fur-

ther heterogeneity in provinces and categories for which we have a sufficiently large number of

households.24

Figure 2 illustrates an example of kmeans classification. It shows the average daily consumption

patterns for weekdays and weekends of households with low contracted power and no electric heating

in Coruña. One can see that the algorithm picks up a variety of consumption patterns: households

who consume in the evening (type 0), households who consume slightly more at night (type 1), and

households who consume mostly during lunchtime and in the evening (type 2). Figure ?? reports

load curves for more types from different provinces, exhibiting a richer pattern.

4.2 Step 2: Identifying the Income Distribution of each Type

From step 1, we get a type θgi , assigned to each household in a province g. The type space for

each province g is Θg ≡ {θg1, θ
g
2, ...θ

g
Ng}, where θgn contains information on whether the household’s

contracted power is low (L) or high (H), on whether it owns electric heating (EH) or not, and

on its kmeans type. In our main specification, we set the number of types to be Ng = 12 for all

provinces, with 3 kmeans types within each contracted power-EH category. We estimate the types

and income distribution for each province separately. From now on, we suppress the superscript g

for clarity.

23Hourly consumption share is defined as the hourly consumption divided by the total consumption for the day.
24In practice, we reduce the kmeans clustering types if a type contains less than 1,000 households. For example, in

a province where electric heating is rare, we reduce the number of types within that category.
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Figure 2: An example of kmeans types in Coruña with low contracted power and no electric heating
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Type 0: 17.8% 5.3kwh/day
  low CP  no EH
Type 1: 54.7% 6.1kwh/day
  low CP  no EH
Type 2: 27.5% 6.0kwh/day
  low CP  no EH

Notes: This figure provides an example of the kmeans classification of households in Coruña with low contracted

power and no electric heating. The three clusters group households according to their electricity consumption profiles

throughout the day (in shares). The first 24 hours are for weekdays and the last 24 hours are for weekends.

We denote the share of type n households in zip code j as P j(θn), and compute it as follows,

P j(θn) =
1

HHj

∑
i

1(θi = θn), (2)

where HHj is the total number of households in zip code j.

Conceptual non-parametric estimator Once we have a distribution of types at the zip code

level, we can uncover the unknown probabilities of types having a certain income by using across-

zip-code restrictions in the share of types. For example, if the income at a certain zip code is

relatively high, and if there are relatively many households in that zip code with high contracted

power, the algorithm will conclude that the likelihood of high income for the high contracted power

type is larger. Assuming that the underlying income distribution of a type θn is the same across

zip codes within a province, we get the following moment conditions by matching the observed and

predicted zip-code-level income distributions:

min
η

∑
j

ωj

K∑
k=1

(Prjk −
∑
θn∈Θ

ηnkP
j(θn))2, (3)

s.t.

K∑
k=1

ηnk = 1 ∀θn ∈ Θ, (4)

where ωj is a weight representing the population of zip code j, Prjk is the share of households in

income quintile k in zip code j, and ηnk is the probability that type θn belongs to quintile k.

The above objective function (3) uses a set of (K − 1)× Number of zip codes within the group
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moments to identify the (K − 1)×N unknown probabilities of income, η, where K is the number

of income bins and N is the number of types. Thus, we need at least N zip codes to identify η.

In practice, a larger number of zip codes can help reduce noise, which can otherwise lead to an

inaccurate classification of consumer types and P j(θn).

In our application, the number of zip codes that can be naturally grouped together is limited

(e.g., a given geographical area), and thus we are constrained in the number of types that we can

accommodate. In our main classification, we have only 12 types per province. Therefore, in our

main implementation we rely on a semi-parametric estimator that can provide additional flexibility

at the cost of some functional form assumptions.

Main semi-parametric estimator We implement a semi-parametric estimator that allows the

income distribution of types to exhibit differences across individuals and zip codes. It has the

advantage of allowing individuals classified into the same type to have distinct income distributions,

which otherwise could be too strong of an assumption with a limited number of types.

More concretely, we specify that the probability that a household of type θi belongs to the income

bin k depends on individual characteristics (xi) and zip code demographics (zj). This makes the

method computationally more intensive, as we need to keep track of income probabilities at the

individual level, rather than at the type level.

We use the following moment conditions by matching the observed and predicted zip code

income distributions as above, but integrating over all households rather than using the aggregate

shares of types:

min
η,α,β

∑
j

ωj

K∑
k=1

(Prjk −
∑
i∈Ij

Prk(θi, xi, zj))
2, (5)

s.t. Prk(θi, xi, zj) =
exp(δijk)∑K

k′=1 exp(δijk′)
, ∀k ∈ [1, · · · ,K], (6)

δijk = αk + βθi0 × k + β1xi × k + β2zj × k, (7)

where ωj is a weight representing the population of zip code j, Prjk is the share of households in in-

come quintile k in zip code j, and Prk(θi, xi, zj)) is the predicted probability of household i from zip

code j belonging to income quintile k. θi is the household’s kmeans type, xi includes the house-

hold’s contracted power (continuous variable) and their binned monthly electricity consumption

(dummy variables), and zj represents the demographic variables of the zip code.

Unlike in our previous specification (3), the probability of income Prk is now a function of these

variables. We use classic discrete choice logit formulas to parameterize the relationship between

observed variables, household types, and income quintile probabilities, as shown in equations (6)

and (7).αk is a common income-bin dummy. βθi0 are type-specific coefficients and (β1, β2) are the

same for all types. βθi0 × k explains how type θi’s income distribution differs from the average. If

βθi0 > 0, it means the type is richer than average in a first-order stochastic dominance (FOSD)
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sense. This ordering means that one type’s income distribution cannot have higher probabilities in

both the richest and the poorest bins compared to another type.25

In our main specification, we focus on individual characteristics as they give the most flexibility

to the individual distribution of income, with xi including a household’s contracted power, con-

sumption, and peak consumption, as well as the slope estimates from the HVAC inference step to

allow for additional flexibility on heating and cooling behavior.26 Including these components al-

lows the household-level income distributions to be more flexible within and across zip codes.27 β1xi

captures if higher contracted power within a type is correlated with higher income (β1 > 0). β2zj

captures the correlation of characteristics and income. We would expect lower socio-demographics

in the zip code to be negatively correlated with the distribution of income, keeping constant the

type and other characteristics (e.g., for unemployment, we would expect β2 < 0). Both βθi1 and βθi2

contribute to the distribution of income of a given type being different between zip codes, as shown

in Appendix ??. Furthermore, two households within the same zip code with the same type can

have different income distributions due to the effect of β1.

The final outcome of interest from the approach are the probabilistic assignments of households

to income quintiles, given by the predictions ηik ≡ P̂ rk(θi, xi, zj).

4.3 Validation of inferred income

Using the estimated income distribution for each type, we calculate the implied income distribution

for each household. Our method aims to better infer the expected income distribution of households.

To understand the added value and performance of our estimator in small samples, we performed

three checks on our method: validation from CEX data, a Monte Carlo simulation, and out-of-

sample validation.

First, we use individual-level survey energy consumption micro data, which includes individual

household income decile and region.28 Figure 3 compares the relationship between contracted

power and income, which are known to be highly correlated. The triangle dashed line shows weak

correlation using aggregate zip code demographics, with an average contracted power around 4

kW across quintiles. In contrast, our estimated income distribution shows a stronger correlation:

households in the low quintile average less than 3.5 kW in contracted power, while those in the

high quintile average more than 5 kW. Using the CEX data supports an even steeper relationship,

as shown by the circled black line.

We use the same CEX data to compare the relationship between annual electricity consumption

25The model can also accommodate a quadratic specification, which would relax this parameterization, yielding
similar results.

26Computationally, we group these characteristics into 15 bins each to make the integration of zip code probabilities
faster. We include a range of other controls in the appendix. The results are similar between the non-parametric
approach and various alternative parameterizations of the semi-parametric approach.

27Consider the following two households: Household A has low contracted power and belongs to a “richer” type,
while household B has higher contracted power and belongs to a “poorer” type. Assuming β1 > 0, which implies
that households with higher contracted power are wealthier, the income distributions of households A and B would
not necessarily have a FOSD relationship.

28See Appendix A.4 for a description of the data.
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Figure 3: Validation with CEX data
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Notes: This figure represents the relationship between household income quintiles (on the x-axis) and contracted

power (on the y-axis). The squared green line represents the estimated relationship using our two-step method, while

the dashed gray circled line uses only the zip code income distribution. To validate our estimation, the triangle

black line depicts the relationship from the CEX survey. Although the CEX survey only reports total annual bills

and annual electricity consumed, we infer the contracted power using information about regulated contracted power

prices (in euros per KW), taxes (in percent), other fees (in euros) and average annual energy component prices (in

euros per KWh) provided by the CNMC (Spanish Competition Authority and Regulator).

and income quintile in Appendix C.1. In Figure C.1, we compare the estimated results with the

CEX survey data. In all provinces, the näıve approach captures only across-zip code income

variation and cannot explain the relationship between income and consumption. On the contrary,

the GMM approach performs clearly better even though the relationship between income and

electricity consumption is flatter than in the CEX survey data.29

Second, in Appendix C.2, we perform a Monte Carlo simulation in which we assume that we

know each individual household’s income. We show that the estimator correctly recovers household

income in expectation and examine what happens when some of our assumptions and choices differ

from the true data-generating process. Overall, the Monte Carlo simulation helps highlight the

value of our approach. With enough flexibility, we can reveal within-zip code heterogeneity that

would be muted using a näıve approach. As long as we allow for sufficient flexibility and have

enough data, this classification appears to improve the inferred expected household income.

Finally, in Appendix C.3, we perform an out-of-sample validation of the methodology by assess-

ing how well our model predicts the distribution of income of out-of-sample zip codes, with positive

results. This is in line with the results from our Monte Carlo simulation.

29An exception to the better fit is Madrid. Our utility data only cover select parts of the city and region, and thus
the household sub-sample is not as comparable to the CEX region sub-sample. This is an important reason why we
do not use the CEX moments explicitly in the estimation, but rather use them for validation purposes. The other
reason is that the regions in the CEX survey are at the state level, rather than the province, limiting our number of
regions further.
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Our methodology does not allow for precise identification of individual household income, but

rather estimates its expected distribution. As such, it should not be viewed as a full substitute for

micro-level data, but rather as a refinement over aggregated data sources. The limitations of this

approach – and their implications for estimating policy impacts – are discussed in greater detail in

the following section.

5 The Impacts of Alternative Electricity Pricing Schemes

Our goal is to identify the winners and losers resulting from the shift to RTP and ToU, using our

estimated income distribution at the household level. We analyze the distributional impacts along

two dimensions: across income groups and within income groups. Our results are based on the

changes in monthly electricity bills across income quintiles. While we do not provide an explicit

utilitarian interpretation of these effects, it is important to note that the positive impacts are

likely to be more relevant for low-income households, who tend to be budget-constrained. When

considering the marginal utility of income, electricity consumption represents a larger share of their

overall expenditures, and their energy use tends to be concentrated on essential services.

5.1 Counterfactual bills

Using the price and smart meter data, we estimate household electricity bills under Real-Time

Pricing (RTP), and under Time-of-Use tariffs (ToU) and time-invariant tariffs. To do this, we

construct alternative dynamic pricing tariffs, holding consumption fixed across alternatives. These

counterfactual bills provide an idea of the bill shock that households face in the presence of a pricing

change, even though their final bill might be affected by their demand responses.

For each individual household i and each month m, we compute the following expressions:30

BillRTPi := (1 + τ)
∑
hdm

(
phdm + f

)
kWhi,hdm, (8)

BillToUi := (1 + τ)
∑
hdm

(p+ fh) kWhi,hdm, (9)

Billi := (1 + τ)
∑
hdm

(
p+ f

)
kWhi,hdm, (10)

where τ is the tax; phdm is the real-time electricity price in hour h of day d in month m and p is the

revenue-neutral time-invariant electricity price; fh and f are the ToU and non-ToU revenue-neutral

access fees; and kWhi,hdm is the consumption of household i in that hour. Equations (8) to (10)

give the bills under RTP, under ToU and under revenue-neutral annual time-invariant prices and

fees, which we refer to as flat bills.31 We will use the differences ∆BillRTP = BillRTPi −Billi and

30In practice, electricity bills also include other cost components, such as network charges, which are independent
of consumption and/or energy prices.

31Since the sample period includes the months of January, February, March, and April for 2016 and 2017, the
observations for those months are each weighted by 0.5 to get a measure of the annual average bills.
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∆BillToU = BillToUi −Billi to compute the bill changes from being either at RTP or ToU relative

to time-invariant electricity prices and fees, respectively.

Last, we compute another measure for the time-invariant electricity prices but at the monthly

level, i.e., a constant revenue-neutral price for each month. The resulting annual bill is

Bill
m
i := (1 + τ)

∑
hmd

(
pm + f

)
kWhi,hdm, (11)

pm :=

∑
hd phdm

∑
i kWhi,hdm∑

hd

∑
i kWhi,hdm

, ∀m. (12)

This allows us to decompose the bill changes due to the switch from an annual time-invariant rate

to RTP as the sum of the “across months” and the “within month” effects. These are respectively

captured by the first and second terms of the equation below:

∆BillRTP = [Bill
m
i −Billi]︸ ︷︷ ︸

across−month

+ [BillRTPi −Billmi ]︸ ︷︷ ︸
within−month

. (13)

The across-months effect reflects the bill impacts due to the monthly price variation across the year,

while the within-month effect reflects the bill impacts due to the hourly price variation within the

month. Note that the across-month effect does not arise under ToU, as ToU tariffs remain constant

across months.

5.2 Policy shocks along income

We start by analyzing the heterogeneity in bill impacts across income groups. Tables 1 and 2 and

Figure 4 classify households in five national income quintiles and report the bill impacts following

a switch from a time-invariant annual price to RTP and ToU. The analysis delivers two main

takeaways. First, the transition to real-time pricing appears nearly distributionally neutral, with

minimal impact on monthly bills across income groups.32 In contrast, the switch to ToU pricing

exhibits markedly stronger progressive distributional effects. The magnitude of these effects varies

substantially depending on the method used to measure income: our estimated household-level

income distribution based on the GMM approach yields stronger results than the naive alternative

relying on zip code-level income data.

Table 1 presents average monthly household electricity bills under the alternative pricing schemes,

both for the overall population and across the five income quintiles, with households classified using

our GMM-based approach. Variation in household electricity bills arises from differences in both

consumption levels and temporal usage patterns, the effects of which differ across pricing schemes.

On average, households consume approximately 251 kWh of electricity per month, with high-income

households consuming more on average than the low-income ones and thus paying higher monthly

32Due to the absence of December data, we may underestimate potential regressive effects of RTP, as lower-income
households are more likely to rely on electric heating. We discuss the distributional impact channels in Section 6,
and specifically the HVAC ownership channel in Section 6.2.
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Table 1: Monthly bills under alternative pricing schemes

Mean Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

KWhi 251.4 229.3 246.0 253.0 260.0 268.3
BillRTPi 55.4 48.4 53.5 55.9 58.2 60.6
BillTOUi 55.4 47.8 53.0 55.7 58.6 61.5

Billi 55.4 48.4 53.5 55.9 58.3 60.6
% losers (RTP ) 36.8 36.8 36.6 36.6 36.7 37.4
% losers (TOU) 45.6 38.7 41.5 44.4 49.0 54.4

Notes: This table reports household-level bills for the prices observed in our sample (RTP), for an alternative
ToU pricing, and for the flat alternative. There are 1,303,350 households. All units are measured in
e/month, except for KWhi, which is measured in kWh/month and the percent of losers. Average monthly
bills include energy, taxes, and other components of the bill such as contracted power fees. The % of losers
refers to those households whose bill increase after the switch from the time-invariant tariff. The quintile
categories are obtained from the procedure described in Section 4, and used to compute the weighted
averages by quintile, reported in columns.

bills.

Differences in consumption patterns do not affect the relative bills paid under RTP versus its

time-variant alternative, which remain proportional to average consumption. Additionally, the

share of households who experience an increase in their electricity bills upon switching from flat-

rate pricing to RTP remains relatively stable around 37% across the income distribution, with only

a slight increase from 36.6% for the second and third quintile to 37.4% for the fifth quintile.

In contrast, the transition from flat rates to ToU pricing induces more pronounced distributional

impacts. Specifically, the magnitude of bill changes is more substantial: households in the lowest

income quintile save 0.6e/month per month, whereas those in the highest quintile incur an average

increase of 0.9e/month per month. Moreover, the proportion of households with higher bills under

ToU is significantly higher in the top income quintile (54.4%) compared to the bottom quintile

(38.7%).

Figure 4 plots the predicted bill impacts across income groups, showing that the predictions

vary significantly depending on whether we use our estimated household-level income distribution

(as in Table 1) or a zip code-level income distribution (the näıve approach). Under our proposed

method, the shift to Time-of-Use (ToU) pricing has pronounced distributional effects. Ignoring

within–zip code income heterogeneity obscures these progressive effects: the näıve approach yields

predicted bill impacts that are nearly flat across income groups. The intuition behind this is that

the näıve approach can only capture the impact correlated with geographical factors, missing the

impacts that are explained by household types.33

One concern with time-varying electricity pricing is that lower-income households may struggle

to cope with increased month-to-month bill variability, given that they often face binding monthly

33In Appendix C.2.2, we use Monte Carlo simulations to evaluate the extent to which the two-step approach and
the näıve approach capture the true impact. The simulation results in Figure C.5 roughly replicate our main policy
findings: the two-step procedure provides strong progressive results that align with the true impact, while the näıve
approach yields slightly progressive results.
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Figure 4: Bill changes due to the switch of tariffs [Euro/Month]
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Notes: This figure represents the monthly bill increase when moving from an annual time-invariant price to RTP

or ToU. Results are reported for the five national income quintiles, with household income classified according

to our estimated income (GMM) or to the zip code income (näıve). The shaded areas represent the confidence

intervals that account for uncertainty in our estimated measure of income.

Table 2: Average bill and volatility changes from the switch to RTP

RTP Bills ToU Bills Flat Bills
GMM Näıve GMM Näıve GMM Näıve

Quintile 1 0.36 0.34 0.30 0.28 0.33 0.29
Quintile 2 0.35 0.33 0.29 0.28 0.31 0.29
Quintile 3 0.33 0.33 0.27 0.27 0.29 0.29
Quintile 4 0.31 0.33 0.26 0.27 0.27 0.29
Quintile 5 0.30 0.32 0.24 0.27 0.25 0.28

Notes: The table reports the average bill changes from the switch to RTP. The first two columns report monthly

bill volatility changes. For each household, we calculate the standard deviation of its monthly bills divided by the

household’s average monthly bill. In this table, we report the average volatility of all households by inferred income

quintiles. The middle two columns report the estimated percentage of losers by income quintiles from the GMM and

the näıve approaches. The last two columns report average bill changes for losers and winners separately.
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budget constraints that align with the frequency of their income. The literature on credit constraints

in developing countries (e.g., Jack and Smith (2020); Berkouwer and Dean (2022), among many

others) suggests that such liquidity constraints can impose significant opportunity costs.

Table 2 investigates this issue by reporting bill volatility under each pricing regime (RTP, ToU,

and time-invariant pricing) for all income quintiles, using both the GMM-based and näıve income

classification approaches. While the näıve approach indicates only modest differences in bill volatil-

ity across the income distribution, these disparities become more pronounced when household-level

income is estimated using the GMM approach.

Our results confirm the above concern: bill volatility increases for all income quintiles under RTP

relative to time-invariant pricing, with the first (lowest) income quintile experiencing the largest bill

volatility. Specifically, compared to the fifth quintile, bill volatility for the first quintile is 0.36 under

RTP and 0.33 under flat bills. This heightened volatility among lower-income households is largely

driven by their greater reliance on electric heating, as discussed in Section 5. In contrast, ToU

reduces bill volatility relative to time-invariant pricing across all income quintiles, but particularly

so for the low-income group.

To explore the channels for the distributional impacts of RTP, Figure 5 decomposes its bill

impacts into within-month and across-month components. Panel (a), which relies on our estimated

household income distribution, reveals stronger distributional patterns for each source of price

variation compared to Panel (b), which is based on the näıve approach using zip code-level income

data. Once again, relying on aggregated zip code-level information tends to obscure the underlying

distributional effects.

Interestingly, under both approaches, the progressivity of the within-month component is nearly

offset by the regressivity of the across-month component, resulting in an overall distributionally

neutral effect. However, this decomposition reveals an important nuance: bill volatility increases

under RTP, particularly for lower-income households.

5.3 Robustness

Our method is subject to several researcher choices that can impact the results. In Appendix D,

we provide estimates of Figure 4 under alternative specifications. Figure D.1 suggests that the

nonparametric and the semiparametric approaches give similar results. Our results are also robust

to different choices of semi-parametric specifications. The different specifications consider alterna-

tive numbers of clustering types, the inclusion of observable or inferred characteristics (contracted

power and electric heating), and a range of controls. We find that our estimator is robust to these

modifications, also at the regional level, as shown in Figure D.2.

5.4 Methodology Discussion

Our procedure for refining individual household income using zip-code-level income distribution

data and consumer types is novel from a methodological point of view. To make this method
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Figure 5: Decomposition of the distributional impact of RTP
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(a) GMM approach
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(b) Näıve approach

Notes: These figures decompose the bill change when moving from an annual time-invariant price to

monthly prices (pink hashed bars) and from monthly prices to RTP (red bars), for the five national

income quintiles. Panel (a) classifies households according to our estimated income (GMM approach),

while Panel (b) relies on the zip code level income (näıve approach). Note that these figures represent

the national average, which hides the heterogeneity in the bill impacts across regions.

applicable in other contexts, this subsection discusses several general principles underlying our

approach.

Based on the econometric assumptions and Monte Carlo results, we suggest that the choice of

consumer types adheres to three principles: (i) the types should inherently correlate with consumer

income and have shared common ground across zip codes, (ii) the types should correlate with the

policy impact of interest, and (iii) conditional on types, income should not directly impact the

effects of the policy. The first principle implies that the income distribution, conditional on types,

should either be identical across zip codes (the assumption for our non-parametric approach) or

that any differences can be explained by observable factors (the assumption of our semi-parametric

approach).

The second principle calls for bundling households along the dimensions that are most important

for the policy at hand. For example, for a policy about non-linear pricing, identifying types based

on total monthly consumption would be natural. Rather than assuming that income is fully sorted

along consumption (as in Borenstein (2012)), the methodology could allow for different income

distributions at each consumption bin.

For the third principle, while it would be tempting to classify consumers based on the impact

of the policy itself, we are concerned that this would overclassify them, making our first principle

less likely to hold. Indeed, a natural suggestion would be to directly use the bill change as the

“type”. As in Borenstein (2012), this might be treated as a bound as it would tend to “over-sort”

households. In contrast, we prefer to classify households based on general consumption patterns,

which are correlated to the bill impacts and contracted power, rather than based on final bills,
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which can fluctuate substantially.

In Appendix C.2, the Monte Carlo exercises provide support for these principles and discuss the

validity of our approach. If the types are not accurate enough to distinguish household incomes, then

the inferred income will be less correlated with the true income (Figures C.2 and C.3). Furthermore,

if the policy impact is not fully explained by consumer types, or if income directly impacts the

policy outcome, our approach cannot fully reveal the true distributional impact (Figure C.5).

Nevertheless, it is noteworthy that our approach consistently outperforms the näıve approach. In

turn, the Monte Carlo exercises formalize our robustness checks, suggesting that the results from

the two-step approach are more closed to the true data than the näıve approach, even when we

chose fewer types or classify zip code groups in a sub-optimal way.

6 Channels explaining heterogeneous shocks

This section uncovers the bill impacts of RTP and ToU along several dimensions beyond income.

We focus on the differences between households regarding their consumption profiles, their HVAC

status, and their locations.

As noted by Cronin et al. (2019) and Douenne (2020), there exists substantial heterogeneity in

energy use within income groups. This variation may arise from limitations in measuring house-

hold income or long-term wealth, but also reflects genuine differences in consumer preferences and

behavioral choices, even when income is held constant.

Panels (a) and (d) of Figure 6 illustrate the distribution of bill impacts resulting from a shift

from an annual time-invariant price to RTP and ToU, respectively. These distributions are shown

for the 1st, 3rd, and 5th income quintiles. Under RTP, the distributions exhibit relatively mod-

est differences across income groups, but substantial dispersion within each quintile. Still, the

maximum monthly gains or losses do not exceed 1 e.

In contrast, ToU pricing results in significantly greater variation both across and within income

quintiles. Consistent with the progressive effects of ToU discussed above, the distribution of bill

impacts for the 1st quintile is visibly shifted to the left compared to those of the 3rd and 5th

quintiles, indicating greater savings for lower-income households. Moreover, the magnitude of

gains and losses is larger under ToU, with some households experiencing gains or losses exceeding

4 eper month.

For both pricing alternatives, the large differences in impacts within each income quintile hide

other sources of heterogeneity, such as location and its implications for heating and air conditioning

(HVAC), an issue on which we will elaborate further below. Panels (b) and (c) split the distributions

between those regions where electric heating is prevalent (“electric heating regions”), from those

where it is not (“non-electric heating regions”). The comparison of both plots shows that low-

income households are relatively more negatively impacted in the electric heating regions, while

the reverse applies to the non-electric heating regions. This finding suggests that the distributional

impacts are not only driven by income differences but also by household locations and HVAC status.
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Figure 6: Bill shock due to the switch to RTP and ToU
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(b) RTP – Electric heating regions
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(c) RTP – Non-electric h. regions
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(d) ToU – All regions
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(e) ToU – Electric heating regions
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(f) ToU – Non-electric h. regions

Notes: These figures show the distribution of the bill changes due to the switch to RTP (upper panels) and ToU

(lower panels) in the first, third and fifth income quintiles. Panel (a) and (d) shows the distributions at the national

level for RTP and ToU respectively, while Panels (b)-(e) and (c)-(f) distinguish between regions with a high and a

low prevalence of electric heating, respectively. Together, they show that there is substantial heterogeneity within

income groups, with the highest income group tending to have the most volatility. The differences within and across

the quintiles are much more pronounced for ToU than for RTP.
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Figure 7: Load curve by income quintiles
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Notes: Panel (a) shows the average consumption patterns over the day for the five national income quintiles. Panel

(b) depicts the normalized hourly consumption shares, defined as the share of the household’s daily consumption at

a given hour, over the average share in the sample. This shows that while consumption levels are not very different

across income groups, their distribution across time is highly heterogeneous.

The following section is devoted to disentangling these channels.

6.1 Consumption Profiles

Our previous results demonstrate that transitioning from time-invariant monthly pricing to Real-

Time Pricing (RTP), as well as from non-ToU to Time-of-Use (ToU) tariffs, has progressive distri-

butional effects, i.e., lower-income households tend to benefit from these changes. These outcomes

are primarily driven by differences in daily consumption patterns across households, as we document

below.

Panel (a) in Figure 7 shows the average hourly consumption profiles for households across the

five income groups. While the overall differences between income groups appear small,34 there is

notable variation in their consumption patterns throughout the day. To highlight this heterogeneity,

Panel (b) plots the share of daily consumption for each hour relative to the sample average by

income group.35 Households in the higher-income group tend to consume more during peak hours

within the day compared to the sample average, whereas those in the lower-income group consume

relatively more during off-peak hours of the day.

6.2 HVAC status

Our previous results also show that transitioning from annual to time-invariant monthly pricing

tends to disadvantage low-income households – an effect observed exclusively under RTP. This

outcome is primarily driven by differences in seasonal consumption patterns, which in turn are

largely determined by the presence of electric heating (EH) and air conditioning (AC). These

34These differences would be more pronounced if Madrid were excluded, as it is the only region where high-income
households tend to consume less electricity. This may be due to the widespread use of natural gas in Madrid.

35For instance, we calculate the share of daily consumption at noon for a given income group and compare it to
the overall average.
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Figure 8: Load curves by HVAC status and income
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(a) Hourly consumption pattern [kWh] - Heating

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Month

100

150

200

250

300

350

400

450

500

M
on

th
ly

 C
on

su
m

pt
io

n 
[k

W
h]

1st Quintile
1st Quintile-heating
5th Quintile
5th Quintile-heating

(b) Annual consumption pattern [kWh] - Heating

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

0.2

0.4

0.6

0.8

1.0

1.2

Ho
ur

ly
 C

on
su

m
pt

io
n 

[k
W

h]

1st Quintile
1st Quintile-ac
5th Quintile
5th Quintile-ac

(c) Hourly consumption pattern [kWh] - AC
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(d) Annual consumption pattern [kWh] - AC

Notes: These figures show consumption profiles over the day (the left panels) and the year (the right panels) for house-

holds with electric heating (the upper panels) and AC (the lower panels). Results are reported for low (1st quintile)

and high-income households (5th quintile). The lines are mean hourly consumption for each group of consumers,

truncating the top 1 percentile kWh observations. Panel (a) on the left presents the hourly consumption profiles for

winter months, highlighting the differences between households with and without electric heating. Similarly, panel

(c) focuses on the profiles for summer months.

appliances significantly affect both the total volume and the temporal distribution of electricity

consumption, as we show next.

Panels (a) and (b) in Figure 8 illustrate the average consumption patterns of households with

and without electric heating throughout the day and across the year, respectively. Panels (c) and

(d) do the same for AC. As shown, there are notable differences in consumption patterns based

on HVAC status. Households with electric appliances consume considerably more electricity at all

hours compared to those without, and their consumption patterns tend to be peakier, especially in

the case of heating.

Additionally, there are strong seasonal effects. As expected, households with electric heating

consume more during the winter months (October through April), while those with AC see higher

consumption during the summer months (June through September). For heating, these seasonal

effects are more pronounced among high-income households compared to low-income households.

In contrast, the seasonal impact of AC usage is relatively consistent across income groups.

In general, higher-income households are more likely to have AC, while lower-income households

are more likely to rely on electric heating. This disparity is due to the high installation costs
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Figure 9: Bill changes [%] due to RTP by electric HVAC status
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Notes: These figures plot the distribution of the bill changes due to the switch to RTP for households

with no electric HVAC, with AC only, with electric heating only, or with both. The within-month and

across-months effects are shown in Panels (a) and (b), respectively. The bigger bill increases are suffered

by households with electric heating due to the across months effect.

of alternative heating systems (e.g., gas or central heating) compared to electric heating, which

typically uses low-cost plug-in radiators. Specifically, 13% of households in the 1st income quintile

and 15% in the 5th quintile have AC, while 27% of the 1st quintile and 12% of the 5th quintile use

electric heating.36

Since electricity prices tend to be higher during winter months when electric heating is in use, the

shift from an annual price to RTP disproportionately impacts low-income households. The across-

months effect offsets the progressive within-month effects discussed in the previous subsection. In

the case of ToU, this countervailing effect is muted since ToU tariffs remain unchanged across the

year.

This is consistent with the evidence reported in Figure 9, which decomposes the bill impacts

of RTP in the within and across months channels, distinguishing according to HVAC status. In

Panel (a), both AC and electric heating owners lose on average as they consume more. The winter

price volatility is ten times larger than during the summer, amplifying the bill impacts of electric

heating. Regarding the across months effects shown in Panel (b), AC users gain from being under

RTP while electric heating users lose for reasons explained above.

6.3 Location

Another key factor driving the distributional impacts of RTP and ToU is regional heterogeneity.

Consumption patterns are closely tied to local weather conditions, influencing HVAC usage even

36These results are presented in Figure B.2a in the Appendix. For AC, the differences are even more pronounced
when accounting for location. Warmer, lower-income regions in Spain have more AC use, with only minor differences
within regions.
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when controlling for income. Additionally, regional disparities in the availability of heating infras-

tructure – particularly gas – affect the prevalence of electric heating. For example, while 90% of

households in Madrid have access to heating systems, this figure drops to 60% in more rural areas

like Galicia. Castilla y León has the lowest incidence of electric heating, with only 7% of households

using it, compared to the national average of 19%, as the region relies more heavily on gas and oil

heating systems.37

Figure 10 takes a look at the distributional impacts by region (this figure is analogous to

Figure 4, but it reports each region separately). Again, across all specifications, one can see that

our GMM-based approach consistently yields more pronounced distributional effects across income

groups.

The RTP effects tend to be small and can be progressive or regressive depending on the region,

while the ToU effects tend to be progressive throughout (with the exception of the fifth quintile in

Castilla-y-León, where the effects are noisier). Overall, we conclude that HVAC ownership plays a

critical role in shaping the distributional impacts of RTP, as it significantly affects both the level

and the seasonal profile of electricity consumption. In contrast, the distributional effects of ToU

pricing are less sensitive to HVAC status, since ToU does not depend on seasonal consumption

patterns to the same extent.

7 Conclusions

We assess the distributional impacts of transitioning from time-invariant electricity pricing to Real-

Time Pricing (RTP) and Time-of-Use (ToU) pricing in the Spanish electricity market, where RTP

is the default for households and ToU on access fees has recently become mandatory. While Fabra

et al. (2021) found that the adoption of RTP had little effect on aggregate household electricity

consumption, its differential impact across income groups remains an open question. This is a

critical issue, as concerns about adverse distributional outcomes have hindered broader RTP im-

plementation in other regions. In this context, the distributional effects of ToU serve as a useful

benchmark for evaluating those of RTP.

Using hourly electricity consumption data from a large sample of Spanish households, combined

with detailed socio-demographic information, we were able to assess how household electricity bills

have changed under RTP and ToU and how these changes affect different income groups. Addition-

ally, the consumption data allowed us to infer ownership of electric heating and air conditioning –

key factors in determining the distributional effects of the pricing schemes.

Our analysis indicates that the shift to RTP has been largely distributionally neutral. This

null effect can be decomposed into two offsetting channels: variation in electricity prices within

months and across months. We find that low-income households tend to consume more electricity

during lower-priced hours within a month, making RTP progressive in that dimension. However,

this benefit is offset by a regressive across-month effect: low-income households rely more heavily

37See Table A.1 in the Appendix for details.
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Figure 10: RTP and ToU Effects by Region
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(b) ToU, Madrid
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(c) RTP, Galicia
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(d) ToU, Galicia
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(e) RTP, Castilla y León
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(f) ToU, Castilla y León
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(g) RTP, Castilla-La Mancha
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(h) ToU, Castilla-La Mancha

Notes: These figures display the impact on monthly electricity bills (in e) resulting from a shift from
time-invariant pricing to either RTP (first column) or ToU (second column), for four representative
regions in Spain. Results are presented under two income classification methods: our proposed GMM-
based approach and a näıve alternative that ignores within-zipcode heterogeneity. Under ToU pricing,
the effects are progressive in all regions analyzed. In contrast, the distributional impact of RTP varies
by region – being either progressive or regressive – depending on the prevalence of specific end-use
equipment (e.g., electric heating or air conditioning) in each area. The shaded areas represent the
confidence intervals that account for uncertainty in our estimated measure of income.
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on electric heating and therefore consume more during the winter, when prices tend to be higher.

In contrast, the shift to ToU pricing has a clear progressive impact. Because ToU tariffs remain

constant throughout the year, the gains from low-income households consuming relatively more

during off-peak hours are not offset by seasonal variation in electricity consumption. As a result,

lower-income households benefit more from ToU than higher-income groups.

These findings underscore the usefulness of quantifying the potential distributional impacts of

alternative pricing schemes – and more broadly, of a wide range of public policies for which our

proposed method can prove useful. Indeed, a crucial step in this process is uncovering income

heterogeneity within zip codes, as failing to do so may obscure key distributional effects. Our

proposed methodology offers a path forward by enabling such granularity when actual household-

level income data is not available, and it holds promise for evaluating the distributional consequences

of policies in other settings as well.
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Online Appendix

“The Distributional Impacts of Real-Time Pricing”

A Data sources

A.1 Income data

In this appendix, we provide further details on the demographic data that we use in our analysis.

These data are provided by the Spanish National Institute of Statistics, Instituto Nacional de

Estad́ıstica (INE), and correspond to the most recent census (2011). The data contain information

at the census level on population, age, sex, education, dwelling types (main dwelling, secondary

dwelling, or empty dwelling), number of rooms per dwelling, and net surface area of dwellings for

each census district in Spain. We have also collected detailed information on the distribution of

income at the district (and sometimes section) level.38 We only include places from which we have

electricity consumption data. This limits our analysis to four regions: Galicia, Castilla y León,

Madrid, and Castilla-La Mancha. Figure A.2 plots the location of these provinces.

We complement the INE data with the MB Research data at the postal code level. INE

data reports median and mean income per household for each census. MB Research reports the

distribution of household income, where the cutoffs are representative of the quintiles in the national

distribution of income. Therefore, these two income distributions complement each other in different

parts of the support.

We know the zip code of each household, but not its census. To create a crosswalk between

postal codes and census districts, we use shapefiles of Spanish postal codes and census districts

provided by the INE. Census districts are matched to postal codes with which they have significant

intersection.39 On average, postal codes are matched to around seven census districts. Once census

districts and postal codes are matched, census district data are aggregated at the postal code level.

We find that some zip codes are not present in the shapefiles. To complement the map between zip

codes and districts, we use data with latitude and longitude for the universe of street addresses in

the postal code system (“callejero”).40 A district section and a zip code are matched if the latitude

and longitude of the address are within that section.

A.2 Smart meter data

As explained in the main text, we partner with a large distribution utility in Spain to obtain de-

identified smart meter data at the household level. Our dataset contains information about the

38For confidentiality reasons, sections are often not reported as they are a fairly small geographical units. For small
to medium-sized municipalities, data are often only available at the municipality level, which often coincides with the
postal code. Very small municipalities may not have their data reported.

39The matching algorithm is as follows: if 90% or more of a census district’s area is contained within a postal code,
or if 90% or more of a postal code’s area is contained within a census district, then the census district is matched to
the postal code.

40This information can be obtained at https://www.ine.es/prodyser/callejero/.
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Table A.1: Statistics on the availability of heating systems

State Heating availability Electric heating
Total (1) (2) (3)

Castilla y León 90.8 8.6 2.0 6.9 0.4
Castilla -La Mancha 86.2 15.3 1.9 13.5 –
Galicia 59.9 14.8 4.1 10.9 0.4
Madrid 90.4 15.6 8.3 8.3 0.5

Notes: (1) Individual electric boiler (2) Electric radiators and accumulators (3) Radiant wire. Source: Spanish
National Statistics Institute (INE), Household and Environment Survey 2008 (https://www.ine.es/dynt3/inebase/
index.htm?type=pcaxis&path=/t25/p500/2008/p01/&file=pcaxis&L=0).

hourly electricity consumption for close to four million Spanish households from January 1st, 2016

to May 31st, 2017. It was provided to us by the distribution subsidiary of Naturgy, which is one

of the largest Spanish utility companies. One of the advantages of our data is that we have access

to the universe of meters in a given geography where Naturgy operates as the single distribution

company (regardless of whether they contract with a different retailer).41 This is mostly the case

of Madrid and Galicia, although Naturgy is also present in other zip codes scattered through other

parts of Spain.42

After treating outliers with overly zero consumption observations or missing zip code data, 43

the final sample contains 1,303,350 households, covering 750 zip code regions. We further drop

December 2016 and May 2017 observations for data quality reasons, which leaves 15 months in our

sample period (January 2016 to November 2016, and January 2017 to April 2017). The data include

hourly consumption information (in kWh) for each household served by the utility, leading to more

than 13 billion data points of hourly consumption data. In addition to hourly consumption, a key

part of the identification is the contracted power of the home, which is the maximum consumption

allowed at any time. Since households pay a fixed monthly fee as a function of their contracted

power, they have incentives to contract it according to their actual electricity needs. This is highly

correlated with household income and is therefore crucial to our identification strategy. Figure A.1

plots its distribution. The dashed line divides households into two categories: high- and low-

contracted power. we use this categorical variable in our estimation.

A.3 HVAC statistics by province

We obtain province-level statistics about mode of heating and air conditioning to discipline our

algorithm to infer appliance ownership. These moments are obtained from the Spanish National

Statistics Institute (INE) and are displayed in Table A.1.

41Most zip codes are only associated with a single distribution company, as Spain is organized in large distribution
areas. Municipalities typically only belong to one, with the exception of the city of Madrid. However, in Madrid we
have several zip codes, and most of the zip codes belong to only one of two utilities in the city.

42The geographic distribution of households is shown in the Appendix in Figure A.2.
43The algorithm for cleaning outliers drops a household from the sample if more than 25% of its consumption

observations are zero, or if more than 5% are null.
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Figure A.1: Distribution of household contracted power
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Notes: This figure plots the distribution of contracted power in our data. The dashed line divides

households into two categories: high and low contracted power. We use this categorical variable in our

estimation.

Figure A.2: Geographic distribution of households
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A.4 Consumption expenditure survey

We use data from the Spanish consumption expenditure survey (‘Encuesta de Presupuestos Famil-

iares’ or EPF in Spanish), provided by the Spanish National Statistics Institute (INE). We use the

2016 consumption survey because it is the one that best matches our sample period.

In the microdata, we observe each individual entry of the survey, which can be geographically

linked to the province and contains a survey weight to ensure the representativeness of the survey.

We have 5,517 individuals who belong to the geographical areas covered by our utility. The annual

nature of CEX data makes it unfit to examine the distributional impact of real-time pricing on

households. However, these data allow us to validate the predictions from our methodology in

Section 4.

The survey contains detailed expenditure data for electricity consumption. In particular, it asks

for annual electricity expenditures and annual electricity consumption, which are then averaged at

the monthly level. Additionally, it contains the income decile at the individual level. We make

assumptions regarding the components of the electricity bill so that we can additionally infer

contracted power at the individual level. Table A.2 provides summary statistics of these variables

along the quintiles of the income distribution.

More precisely, to infer the contracted power, we assume the following. During the sample

period, we know that electricity taxes are 21% on the total bill, and an additional 5.113% on most

of the bill (other than the ad hoc fees) and that the annual price per contracted power is 42 euros

per kW, or 3.33 per month (plus taxes). These are regulated fees that are observed. We also need to

make assumptions about other ad hoc fees contained in the bill (e.g., to pay for the smart meter and

other services), which we assume to be of 1.5 euros based on the context. We also need to assume

a pre-tax price per KWh of 12.45 cents, which we take from the average of a quarterly survey of

electricity prices by the competition authority (CNMC).44 Variations in these assumptions provide

comparable correlations of income and contracted power.

Given quantity Qi and bill amount Bi, contracted power is then given by,

CPi =
Bi/1.21− 0.1245 ∗Qi ∗ (1.05113)− 1.5

3.33
·

We also compute the bill share of the contracted power costs by computing:

BSi =
CPi ∗ 3.33 ∗ 1.21

Bi
·

We see that contracted power is correlated with income and that contracted power represents a

larger share of households’ bills for high-income households, given that these are the ones that tend

to contract larger amounts than they typically use.

44These data are also used in Enrich et al. (2022) and described there in more detail.
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Table A.2: Summary statistics from the CEX survey 2016

Quintile Expenditure Quantity Contracted Power Bill share of CP

1 43.34 181 2.88 0.30
2 54.72 221 4.01 0.33
3 58.52 236 4.35 0.34
4 61.99 246 4.77 0.34
5 71.80 281 5.74 0.35

Notes: Own elaboration based on the Spanish National Statistics Institute (INE), Household Expen-
diture Survey (https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176806&
menu=ultiDatos&idp=1254735976608). Only observations from Castilla-La Mancha, Castilla-y-León, Galicia, and
Madrid are included. Expenditure is reported as a monthly average of total electricity bills (in euros), quantity is
reported in monthly kWh consumed, and contracted power is reported in kW and is estimated based on the two
previous variables and a set of assumptions regarding average prices, taxes, and fees during the period.
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B Inferring HVAC status

In this appendix, we infer household HVAC status by exploiting the richness of the smart meter

data. The idea of using high-frequency data to infer HVAC status has been applied to engineering

papers like Westermann et al. (2020) and Dyson et al. (2014).

We use a daily regression approach based on weather data.45 For each household, we first run the

following regression to obtain the correlation between its electricity consumption and temperature

in winter and summer:

kWhid =αi + βiHDDHDD
i
d + βiCDDCDD

i
d + εid (B.1)

where kWhid is the hourly consumption of household i in day d, and HDDi
d and CDDi

d are the

heating degree days and cooling degree days for that day. The coefficients of interest are βiHDD
and βiCDD, which measure how much more a household consumes in response to a day in need

of heating (HDD, typically in the winter) and a day in need of cooling (CDD, typically in the

summer), respectively.

Once we have an estimate of βiHDD and βiCDD, we set some thresholds to determine whether a

household is assigned a flag for owning electric heating (HDD coefficient) and/or air conditioning

(CDD coefficient). First, we only flag them if the estimate we obtain is statistically significant.

Second, we assign appliance ownership only to the highest estimates, to match the share of appliance

ownership in our data. Finally, and given that this reduces the amount of information provided

by our imputed appliance ownership, we preserve the information in the coefficients in our final

estimation and consider a robustness check in which these coefficients are directly used to infer

income, rather than their discretized “dummy variable” versions.

To show that our classification of household types is informative both about their consumption

behavior, we plot consumer daily load curves by identified HVAC status in Figure B.1. EH owners

have relatively higher consumption during both day and night because electric heating devices

are in general more energy-intensive than AC, as shown in Panel (a). We also observe that high

consumption is particularly high during winter months for households that have electric heating,

while it is peaking in the summer for those households with air conditioning, as shown in Panel (b).

Once we perform the income estimation, we can also check the correlation between income and

HVAC mode. As shown in Figure B.2, we find that electric heating is particularly concentrated on

the low-income bins, while air conditioning is positively correlated with income, which is intuitive.

We also show that the patterns of HVAC status and income can change depending on the region.

Although air conditioning tends to be associated with high income (for regions with a significant

share of air conditioning), electric heating is negatively correlated with income, particularly in the

most urban regions (Madrid), as newer buildings tend to rely on city gas for heating.

45Alternatively, we also implemented an estimator based on hourly data. The two approaches provided similar
results, and therefore we use the simpler procedure based on daily outcomes.
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Figure B.1: Load curves by HVAC status
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(a) Hourly consumption pattern [kWh]
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Notes: These figures show consumption profiles over the day (the left panels) and the year (the right panels) for

households with electric heating, AC, or both.

Figure B.2: HVAC status and Income
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C Validation of the methodology

C.1 CEX validation

We report the estimated relationship between income and electricity consumption using the GMM

approach and the näıve approach. In Figure C.1, we compare the estimated results to the CEX

survey data. In all provinces, the näıve approach captures only across zip code income variation

and cannot explain the relationship between income and consumption. On the contrary, the GMM

approach performs better even though the relationship between income and electricity consumption

is flatter than in the CEX survey data.

Two reasons explain this departure. First, our approach has limitations. As explained in Section

C.2.2 and C.5, when income has a direct impact on the variable of interest (e.g., the bill change

impact in our main context or electricity consumption in this section), our approach does not

capture the full relationship. We believe there is no direct impact of income on RTP bill changes

other than through the correlation of income with consumer types (e.g., lifestyle, ...). However

there might be a direct impact of income on electricity consumption. Thus, in Figure C.1, the

GMM results have a lower slope than the CEX survey results, as expected in the simulation C.5.

Second, our data covers only a subset of zip codes, especially in Madrid where we only have data in

relatively low income zip codes. The different coverage between our sample and the CEX sample

accounts for the differences across the two figures.

C.2 Monte Carlo simulation

We conduct Monte Carlo simulations to evaluate the effectiveness of our two-step procedure com-

pared to the naive approach and the true data.

In these exercises, we simulate household incomes, types, and policy impacts. We then infer

household income and the distributional impact using both the naive approach and our two-step

procedure, under the assumption that household income is not directly observed. We compare

the inferred household income with the true household income in Section C.2.1 and the estimated

distributional impact with the true distributional impact in Section C.2.2.

Results from both sections suggest that the two-step procedure performs significantly better

than the naive approach and can closely approximate the true income and the true impact when

certain criteria are met.

C.2.1 Monte Carlo assessment of estimation of household income

Our estimator provides a refined probabilistic assignment of income to households that is more

granular than the income distribution at the zip code level. In order to understand the performance

of our estimator in small samples and under misspecification, we perform a Monte Carlo simulation.

We use the smart-meter household-level consumption data from our sample and create a data

generating process in which we know each individual’s income. We assign types to individuals

8



Figure C.1: Relationship between income and electricity consumption: Comparing survey results,
the imputed income results, and the näıve income results
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(a) Castilla y León
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(b) Castilla-La Mancha
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(c) Galicia
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(d) Madrid

Notes: These figures show that the imputed income from our approach is closer to the actual income from the survey

data as compared to the näıve approach. The figures depict the relationship between electricity consumption and

income for the four regions in our sample. In each figure, the gray line respresents the CEX survey results, the blue

line represents the results using the GMM approach, and the dashed blue line those from using the näıve approach.

based on their consumption profiles, which we then use to assign them to a certain income bin,

respecting an assumed distribution of income, and zip code. We then aggregate the randomly-

assigned incomes to the zip code level, so that we can compute the distribution of income at the

zip code level, which is what the econometrician can observe.

The more detailed steps are as follows:

1. We summarize smart-meter household-level data (one entry per household) to reduce the

dimensionality of the data and assign them to a group.

2. We classify households into five types for each group using a kmeans algorithm based on

their hourly consumption shares and total consumption.

3. We sort types based on their peak consumption share (hours 8 - 23). We assign the more

“peaky” types to a higher income distribution, reflecting the within-month correlation of peak

consumption and income.

4. This distribution is fixed conditional on a type and is the same across all zip codes within a

group, but we introduce some noise to capture unmodelled randomness in the data.
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5. Using the assigned types, we assign a zip code number to each household based on a pre-

established probability that type θ belongs to zip code z, Pr(z|θ).

6. These zip codes and the zip-code-level income distribution, together with the household-level

consumption patterns, is what is observed for the estimation.

These steps allow us to create an individual and zip-code-level distribution of income that is

consistent with the underlying types and assumptions. It also allows us to create an aggregate

version of the income data at the zip code level.

We then compare two methods:

• the näıve approach, which assigns the zip code distribution of a zip code to all households

within a zip code,

• our two-step approach, which classifies first households within a region into N kmeans types

and then fits the aggregate distribution of income via GMM.

As explained in the main text, our method’s goal is to better infer the income distribution of a

given household. In our Monte Carlos, we know the true type of households and can compute their

expected income. We compare it to our inferred income. In the case of the näıve approach, this

amounts to imputing the same expected income to all consumers in a zip code. In the case of our

method, the imputation will be by estimated type. Figure C.2 shows that the näıve distribution of

income tends to be much flatter (i.e., homogeneous) than the true distribution. Using our method,

the inferred expected distribution lines up much better with the truth. This fit is naturally improved

as we allow for more types and data.

Another way to show this result is by showing the inferred distribution of income of households

belonging to a given quintile. In our Monte Carlos, we simulate a household’s quintile. A household

simulated to belong to the fifth quintile should have an underlying expected distribution with higher

income. However, neither of these objects are known to the econometrician. We find that the näıve

approach fails to estimate that households belonging to high quintile have a higher distribution of

income. Instead, the probability of having a certain level of income is very similar across households

along all quintiles, as shown in Panel C.3a. As we allow for more types, the distribution of income

of households becomes more different along quintiles, as shown in Panel C.3c.

Finally, we examine if our inferred income is still more correlated with true income than with

the näıve approach in the presence of errors in Figure C.4. We find that misclassifying zip codes

into heterogeneous groups still leads to an improved correlation between imputed income and the

true expected income.

Overall, the Monte Carlo simulation is useful to highlight the value of our approach. With

enough flexibility, we are able to unveil within-zip-code heterogeneity that would be muted using a

näıve approach. As long as we allow for sufficient flexibility and have enough data, this classification

appears to improve the inferred household income in expectation.
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Figure C.2: Simulation results: Imputed income by household type
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(a) 2 types, sample size 200
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(b) 3 types, sample size 200
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(c) 4 types, sample size 200
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(d) 5 types, sample size 200
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(e) 5 types, sample size 500
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(f) 5 types, sample size 1000

Figure C.3: Simulation results: Distribution of imputed income conditional on true income quintile
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(b) 2 types, sample size 500
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Figure C.4: Simulation results: Imputed income (5 types, wrong zip code group, sample size 1000)
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C.2.2 Monte Carlo assessment of estimation of policy impacts

Given that our method from inferring households’ income might be subject to limitations, in which

cases are our estimates more likely to better capture the full distributional impacts of the switch

to RTP relative to the the näıve approach?

We perform a Monte-Carlo simulation to inform this discussion. Assume that the true data

generation process behind the distributional impacts is governed by the following equation:

impacti,z = t× θi + k × inci + σz × (φz + φzipgroup) + σe × εiz. (C.1)

The impact on household i in zip code z is impacti,z, which is a function of household i’s type

θi, income inci, its zip code’s fixed effect φz, and the zip code group’s fixed effect φzipgroup. The

error term εiz is orthogonal to all other variables, and it is normally distributed ∼ N(0, 1). The

red coefficients capture the scale of each component: t represents how the individual type affects

the final impact, k represents how individual income affects the impact, and σz and σe are the

scales of regional fixed effects and unobservables, respectively. In our simulations, we explore the

importance of each of these components in driving our results.

The true distributional impact is the summation of the direct impact of income (k) and the

impact through the correlation between income and other variables in equation (C.1), including

location impacts σz and individual impacts t. The zip code level variation is observed, and types

and income are inferred. Figure C.5 reports the true distributional impact compared to the näıve

and the GMM approach under different parameter assumptions. Panel (a) indicates that the GMM

approach can capture the full distributional impact through individual types and the households’

locations.

For our method to work perfectly, we need types, individual characteristics, and zip codes

to be a sufficient statistic to determine the policy impacts. Thus, it is important to capture

type heterogeneity based on policy impacts, thus the focus on consumption profiles and appliance

ownership. We explore what happens when our approach does not work perfectly when k 6= 0. In

this case, realizations of household income (not the expected distribution) directly enter the policy

impacts.46 As shown in panel (b), if the policy impact is correlated with the remaining unobserved

income, we will only partially identify the effect.

In contrast, the näıve approach can only capture the impact through the locations, as shown in

panel (c). When the true causal impact of individual types and income is 0, t = 0, k = 0, the GMM

and näıve approaches give the same results, both of which are consistent with the true impact, as

all variation is at the zip code level. Otherwise, the näıve estimator features bias that can even go

in the opposite direction of the true effects.

46Our method improves the assigned distribution of income to a given household but cannot predict the exact
realized income of a household.
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Figure C.5: Assessing the method with a Monte-Carlo simulation
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(a) Full bias correction
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(b) Partial bias correction
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(c) No näıve bias

Notes: The figure shows Monte Carlo results for the estimation of the policy impacts. The true policy impacts are

depicted with the dashed line. Case (a) “Full bias correction” shows a simulation in which our type and zip code are

sufficient to fully recover to effects, t = 1, k = 0, σz = 1, σe = 1. Case (b) “Partial bias correction” shows that the

method recovers only part of the effect if the unobserved income realizations are correlated with the policy impacts,

t = 1, k = 1, σz = 1, σe = 1. The method still provides a substantial improvement when compared to the näıve

estimator. Case (c) shows that the näıve estimator provides the correct policy impacts only if the zip code variation

is driving the effect, t = 0, k = 0, σz = 1, σe = 1.
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C.3 Cross-validation

While the Monte Carlo exercises have validated our two-step approach, this section uses real data

evidence to conduct further checks. We have performed two sets of tests to uncover the advantages of

our GMM approach relative to the näıve approach. First, we conduct cross-validation by including

a subsample of zip codes in each province and predicting the out-of-sample income distribution for

the other zip codes. For each province, with Z zip code regions, we repeat the following procedure

Z times:

1. Drop one zip code z.

2. Estimate household income with the Z−1 zip code using the semi-parametric GMM approach.

3. Predict household income for households in zip code z using observed household types and

demographics in zip code z and estimation results from step 2.

4. Aggregate inferred household income to the zip code level and obtain the inferred income

distribution for all Z zip codes.

5. Get out of sample error by comparing zip code z’s inferred income distribution with observed

census income distribution.

6. Get in-sample error by assessing the difference for the rest Z − 1 zip codes.

Figure C.6 reports the distribution of in-sample and out-of-sample prediction errors for all

provinces. The two distributions are similar, which suggests that our approach captures the true

relationship between income and consumer types. It can therefore handle out-of-sample predictions.

Figure C.6: Distribution of prediction errors
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Notes: These figures illustrate the distribution of zip-code-level prediction errors.
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D Robustness to alternative specification

We examine the robustness of our results to the number of types, both kmeans and discrete

categories such as heating mode or contracted power.

Main specifications Our main specification

Additional specifications

• Non-parametric

– kmeans (2 to 4 kmeans groups) combined with heating interacted with low and high

contracted power types [main].

– kmeans (2 to 4 kmeans groups) combined with any HVAC interacted with low and high

contracted power types.

– kmeans (2 to 4 kmeans groups) combined with heating, non-heating low contracted

power, and non-heating high contracted power types (fewer types).

• Semi-parametric All the different groupings above combined with several parametric con-

trols that allow for individual flexibility along the following covariates:

– Spec 1: individual contracted power, consumption, peak consumption, and slopes from

HVAC estimation [main].

– Spec 2: individual contracted power, consumption, zip-code unemployment, zip-code

share above 50 years old.

– Spec 3: only slopes from HVAC estimation.

– Spec 4: only consumption and peak consumption

Figure D.1 shows that the results are consistent across a wide range of specifications. Given

that we find that the impacts of RTP are small and not particularly related to income, the results

can be somewhat sensitive to the specification, but the qualitative take away is the same. For the

ToU results, the qualitative and quantitative results are very robust across all these specifications.

Figure D.2 displays the same sensitivity results by region. We find that the results are very

consistent across this wide range of specifications for Madrid and Galicia, the regions with most

households. For the other two regions, the results are also qualitatively consistent across specifica-

tions but noisy.

15



Figure D.1: Robustness Specifications
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(a) RTP Robustness
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(b) ToU Robustness

Notes: These figures display the robustness of our main results to alternative specifications. Alter-
native parametric specifications lead to consistent outcomes. The dashed teal lines display results
from non-parametric specifications.
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Figure D.2: Robustness by Region
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(a) RTP, Madrid
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(b) ToU, Madrid
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(c) RTP, Galicia
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(d) ToU, Galicia
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(e) RTP, Castilla y León
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(f) ToU, Castilla y León
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(g) RTP, Castilla-La Mancha
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(h) ToU, Castilla-La Mancha

Notes: These figures display the robustness of our main results to alternative specifications. Alter-
native parametric specifications lead to consistent outcomes. The dashed teal lines display results
from non-parametric specifications.
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