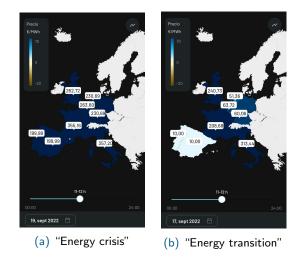
Electricity Market Reforms: Short and Long Term Options

Natalia Fabra


Universidad Carlos III de Madrid and CEPR

OECD Workshop (Virtual). October 12, 2022

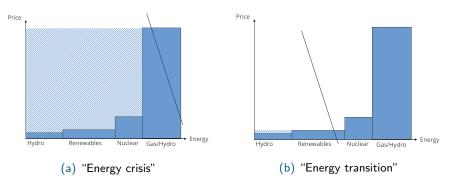

Not just a matter of addressing the current crisis A Tale of Two States

Figure: Wholesale electricity prices in Europe

Electricity Market Reforms

The Need for Reform A Tale of Two States

Figure: Merit-order dispatch, prices and revenues

The Need for Reform

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

The Need for Reform

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

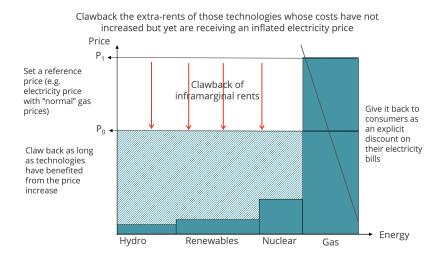
The outcome is not efficient and equity is violated

The Need for Reform

What do these two states have in common?

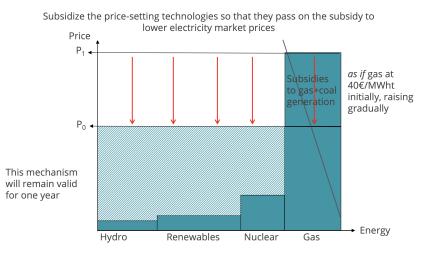
- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

The outcome is not efficient and equity is violated


Sources of inefficiency:

- Large risks for cost recovery \rightarrow investment delays, risk premia...
- Externalities: security of supply, learning economies...
- \blacksquare Electricity as an input \rightarrow loss of global competitiveness
- \blacksquare Increase in inflation and interest rates \rightarrow likelihood of recession
- \blacksquare Electrification discouraged \rightarrow energy transition at risk

Short-run emergency interventions


Price cap on inframarginal producers

The EC has agreed setting a 180/MWh inframarginal price-cap

Short-run emergency interventions

Iberian measure

A new electricity market architecture is needed

Which objectives?

1 Short-run efficiency: production and consumption

- The least cost production units must be dispatched at all times
- The price signal should reflect the system short-run marginal cost

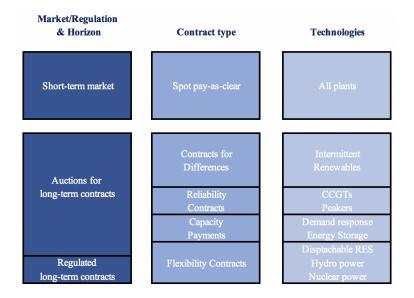
2 Long-run efficiency: investments

- Investments at the scale necessary
- Investments of the "right" technology at the "right" locations
- Investment risks allocated to the least risk-averse party
- Electricity prices must reflect long-run marginal costs

3 Equity

Firms must not make excessive profits

 Preserving the price signal is compatible with providing a fair rate of return to all generation technologies.


- Preserving the price signal is compatible with providing a fair rate of return to all generation technologies.
- 2 Risks are costly:
 - Allocating them efficiently allows to reduce costs and prices.

- Preserving the price signal is compatible with providing a fair rate of return to all generation technologies.
- 2 Risks are costly:
 - Allocating them efficiently allows to reduce costs and prices.
- **3** Trade-off between de-risking the investments and exposing technologies to short-run prices:
 - This trade-off must be assessed technology-by-technology.

- Preserving the price signal is compatible with providing a fair rate of return to all generation technologies.
- 2 Risks are costly:
 - Allocating them efficiently allows to reduce costs and prices.
- **3** Trade-off between de-risking the investments and exposing technologies to short-run prices:
 - This trade-off must be assessed technology-by-technology.
- 4 Technology-neutrality should not be the default:
 - It tends to give rise to excessive rents.
 - It might penalize some needed technologies.

- Preserving the price signal is compatible with providing a fair rate of return to all generation technologies.
- 2 Risks are costly:
 - Allocating them efficiently allows to reduce costs and prices.
- **3** Trade-off between de-risking the investments and exposing technologies to short-run prices:
 - This trade-off must be assessed technology-by-technology.
- 4 Technology-neutrality should not be the default:
 - It tends to give rise to excessive rents.
 - It might penalize some needed technologies.
- 5 Competition is a powerful tool whenever the market is competitive:
 - Otherwise, regulation might be a preferable option.

Which Electricity Market Architecture?

Electricity Market Reforms

Conclusions

• There is an urgent need to reform electricity markets:

- **1** Tackle the energy crisis
- **2** Support the energy transition

New electricity market architecture: aim at efficiency & equity

- 1 Liquid short-run markets
- 2 Auctions for long-run contracts
- 3 Contracts should respond to the characteristics of the technologies
 - Balance costs/benefits of de-risking vs price exposure

Conclusions

• There is an urgent need to reform electricity markets:

- **1** Tackle the energy crisis
- 2 Support the energy transition

New electricity market architecture: aim at efficiency & equity

- 1 Liquid short-run markets
- 2 Auctions for long-run contracts
- 3 Contracts should respond to the characteristics of the technologies
 - Balance costs/benefits of de-risking vs price exposure

Power markets can be a powerful source of efficiency for our economies...as long as we design them right!

ENERGYECOLAB

uc3m Universidad Carlos III de Madrid

Thank You!

Questions? Comments?

More info at nfabra.uc3m.es and energyecolab.uc3m.es

Electricity Market Reforms