The Energy Crisis Emergency Interventions and Structural Reform

Natalia Fabra

Universidad Carlos III and CEPR

IMF Virtual (Virtual)

The Energy Crisis

Wholesale gas prices in Europe

Wholesale electricity prices in Europe

Electricity prices have gone up beyond the cost increase

Inflation Components in Europe

Emergency measures to reduce electricity prices

Price cap on inframarginal producers

The EC has agreed today on setting a 180/MWh price-cap

Iberian measure

Iberian Measure

- The subsidies are proportionally split across the demand that is exposed to market prices
- Contracts outside the market only affected once renewed
- Windfalls reduced but marginal price distorted:
 - Electricity exports to France have (probably) increased
 - Half of the congestion rent accrues to the French TSO
 - Note: Spain + Portugal proposed a market with two-rounds to avoid the impact on trade but the CE preferred not to allow for export restrictions at the cost of the efficiency loss

Price impact of the Iberian Measure: wholesale Pool, Pool+Compensation, Counterfactual

Precio medio del mercado mayorista de electricidad

Desde la entrada en vigor del tope al gas (15 de junio). Precios con la compensación al gas y sin ella.

Price impact of the Iberian Measure: wholesale Compensation

Compensación media diaria a las centrales que generan electricidad con gas

En €/MWh

Price impact of the Iberian Measure: wholesale Savings with respect to Counterfactual

Porcentaje de ahorro por el tope al gas

% (Unidades) 50 45 40 35 30 25 20 15 10 5 Bia 30 de ^sedienbre Dia 17 de septien Alia 7.9 de ^seblienbre Dia gue, Dia 7.3 061. Dia 25 de 1. Dial de ac And a start and Dia 3 de septier 519 7 06 1 230

El Gobierno calculaba un porcentaje de ahorro entre el 15% y el 20%

Porcentaje de ahorro

Fuente: OMIE, www.epdata.es

Price impact of the Iberian Measure: retail

Price impact of the Iberian Measure: retail

Going forward: structural reform

The Energy Crisis

Figure: Wholesale electricity prices in Europe

The Energy Crisis

Figure: Merit-order dispatch, prices and revenues

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- 3 No free entry (or exit): excessive profits or losses not competed away

What do these two states have in common?

- **1** Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

The outcome "might" be efficient (caveats^{*}), but equity is violated

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

The outcome "might" be efficient (caveats*), but equity is violated

Caveats: sources of inefficiency

- Large risks for cost recovery \rightarrow investment delays, risk premia...
- Externalities: security of supply, learning economies...
- \blacksquare Electricity as an input \rightarrow loss of global competitiveness
- \blacksquare Increase in inflation and interest rates \rightarrow likelihood of recession
- \blacksquare Electrification discouraged \rightarrow energy transition at risk

Which market architecture is suitable for these two states?

Will future prices support today's investments? Can this be improved through market design?

- Exposing intermittent RES to short-run prices:
 - Creates uncertainty over cost recovery
 - Makes funding more difficult and costly for the new entrants
 - Brings little benefit as production is mostly exogenous

Will future prices support today's investments? Can this be improved through market design?

- Exposing intermittent RES to short-run prices:
 - Creates uncertainty over cost recovery
 - Makes funding more difficult and costly for the new entrants
 - Brings little benefit as production is mostly exogenous
- Instead, auctioning Contracts-for Differences:

$$\pi = pq + (f - p')q$$

Will future prices support today's investments? Can this be improved through market design?

- Exposing intermittent RES to short-run prices:
 - Creates uncertainty over cost recovery
 - Makes funding more difficult and costly for the new entrants
 - Brings little benefit as production is mostly exogenous
- Instead, auctioning Contracts-for Differences:

 $\pi = pq + (f-p')q$ or equivalently, $\pi = fq + (p-p')q$

Will future prices support today's investments? Can this be improved through market design?

- Exposing intermittent RES to short-run prices:
 - Creates uncertainty over cost recovery
 - Makes funding more difficult and costly for the new entrants
 - Brings little benefit as production is mostly exogenous
- Instead, auctioning Contracts-for Differences:

 $\pi = pq + (f-p')q$ or equivalently, $\pi = fq + (p-p')q$

- Contribute to de-risking the investments
- Allow passing on the efficiency gains to consumers
- Preserve price-exposure (p may differ from p')
- Mitigate incentives to exercise market power (see next)

Auction choices:

- Pay-as-bid vs pay-as-clear
- How much to auction-off
- Auction frequency
- How to pass on the contract prices to consumers
- Technology-neutral vs technology specific

Auction choices:

- Pay-as-bid vs pay-as-clear
- How much to auction-off
- Auction frequency
- How to pass on the contract prices to consumers
- Technology-neutral vs technology specific

Reasons to allow for technology-specific approaches:

- 1 Learning externalities
- 2 Complementarities across technologies
- 3 Reduction of procurement costs (under some cases: when?)

Technology-Neutral vs Technology-Specific Procurement (Fabra and Montero, 2023)

Figure: Average cost curve of solar and wind investments in the Spanish electricity market: Technology Neutral

The Energy Crisis

Technology-Neutral vs Technology-Specific Procurement (Fabra and Montero, 2023)

Figure: Average cost curve of solar and wind investments in the Spanish electricity market: Technology Neutral

Technology-Neutral vs Technology-Specific Procurement (Fabra and Montero, 2023)

It is possible to (significantly) reduce procurement costs at the expense of (slightly) sacrificing efficiency

Designing contracts for flexible resources

Objectives:

- **1** De-risk the investments
- 2 Encourage optimal dispatch

Designing contracts for flexible resources

Objectives:

- **1** De-risk the investments
- 2 Encourage optimal dispatch

Flexibility contract:

• CfD settled against (monthly or annual) average price (\tilde{p})

 $\pi = pq + (f - \tilde{p})q$

Designing contracts for flexible resources

Objectives:

- 1 De-risk the investments
- 2 Encourage optimal dispatch

Flexibility contract:

• CfD settled against (monthly or annual) average price (\tilde{p})

 $\pi = pq + (f - \tilde{p})q$ or equivalently, $\pi = fq + (p - \tilde{p})q$

Strong incentives to dispatch at peak times

Which Electricity Market Architecture? "Energy Transition" state

Which Electricity Market Architecture? "Energy Crisis" state

Conclusions

• There is an urgent need to reform electricity markets:

- **1** Tackle the energy crisis
- 2 Support the energy transition

New electricity market architecture: aim at efficiency & equity

- 1 Liquid short-run markets
- 2 Auctions for long-run contracts
- 3 Contracts should respond to the characteristics of the technologies
 - Balance costs/benefits of de-risking vs price exposure

Conclusions

• There is an urgent need to reform electricity markets:

- **1** Tackle the energy crisis
- 2 Support the energy transition

New electricity market architecture: aim at efficiency & equity

- 1 Liquid short-run markets
- 2 Auctions for long-run contracts
- 3 Contracts should respond to the characteristics of the technologies
 - Balance costs/benefits of de-risking vs price exposure

Power markets can be a powerful source of efficiency for our economies...as long as we design them right!

ENERGYECOLAB

uc3m Universidad Carlos III de Madrid

Thank You!

Questions? Comments?

More info at nfabra.uc3m.es and energyecolab.uc3m.es

This Project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 772331)