Technology-Neutral versus Technology-Specific Procurement

Natalia Fabra, UC3M & CEPR (joint with Juan Pablo Montero, PUC Chile)

Virtual International Seminar in Environmental and Energy Economics March 2021

Research Questions

An imperfectly-informed principal needs to procure multiple units of a good that can be produced with heterogeneous sources (technologies)

- Renewables: wind, solar, hydro...
- **Energy storage**: batteries, hydrogen, pumped hydro...
- Central bank's liquidity: good and bad collateral
- A firm procuring inputs/services from various countries

Research Questions

An imperfectly-informed principal needs to procure multiple units of a good that can be produced with heterogeneous sources (technologies)

- Renewables: wind, solar, hydro...
- **Energy storage**: batteries, hydrogen, pumped hydro...
- Central bank's liquidity: good and bad collateral
- A firm procuring inputs/services from various countries

How should she procure those units?

(and how do the mechanisms used in practice compare among them)

If the principal is indifferent between the various sources....

- **1** Should she run **technology-specific or -neutral** auctions?
- 2 Should she allow for partial separation across technologies?
- **3** How does **market power** affect the choice?
- 4 Should she instead post separate **prices** for each technology?

What are the trade-offs and what do they depend on?

Auctions for Renewables Investments

Worldwide, 106 countries have conducted renewable auctions

Figure: Volumes and prices of renewable auctions worldwide, 2010-2018. Source: IRENA (2019a)

Technology Procurement

An Example: Spanish Renewables Auction

- It took place last January 26, 2021
- Technology Neutral Auction of 3000MW
- Minimum quantity of 1000MW for solar PV and Wind
- Right to sell energy at a fixed price during 12 years
- Once the contract is over, investors receive market prices
- Pay-as-bid auction format

An Example: Spanish Renewables Auction

Figure: Winning bids - solar PV and wind

Renewable Support Schemes in Practice

Commonly used renewables support instruments regulate....

- Quantity: Auctions, tradable quotas...
- Price: Feed-in Tariffs, Feed-in Premiums...

Renewable Support Schemes in Practice

Commonly used renewables support instruments regulate....

- **Quantity:** Auctions, tradable quotas...
- Price: Feed-in Tariffs, Feed-in Premiums...

In turn, instruments can be...

- Technology specific: different instruments/levels of support used depending on technology, scale, location, etc.
- **Technology neutral**: all technologies treated equally
- Hybrid schemes: corrected technology-neutral approach
 - Auctions: bids of some technologies deflated; minimum quotas
 - Green certificates: some technologies are granted more certificates

An Example: Minimum Technology Quotas in Auctions

		2020	2021	2022	2023	2024	2025
Eólica	Incremento	1.000	1.500	1.500	1.500	1.500	1.500
	Acumulado	1.000	2.500	4.000	5.500	7.000	8.500
Fotovoltaica	Incremento	1.000	1.800	1.800	1.800	1.800	1.800
	Acumulado	1.000	2.800	4.600	6.400	8.200	10.000
Solar Termoeléctrica	Incremento		200		200		200
	Acumulado		200	200	400	400	600
Biomasa	Incremento		140		120		120
	Acumulado		140	140	260	260	380
Otras tecnologías (biogás, hidráulica, mareomotriz, etc.)	Incremento		20		20		20
	Acumulado		20	20	40	40	60

Figure: Calendar of technology-specific minimum quotas (Spain)

An Example: Banding and Tradable Permits

Bands	Support in ROCs/MWh for new generating stations accrediting in the period:				
	2015/16	2016/17			
Solar PV (building mounted)	1.5	1.4			
Solar PV (ground mounted)	1.3	1.2			

Figure: Amount of Renewable Obligation Certicates granted to Solar PV (UK)

Roadmap

- 1 (Literature review) ••••
- 2 Model description ••••
- 3 Technology-neutral auctions 📭 💿
- 4 Technology-specific auctions 60
- 5 Adding market power ••••
- 6 (Technology banding) ••••
- 7 (Price regulation) ••••
- 8 Simulations: renewable investments in Spain CO
- 9 Conclusions

Model Description

Firms and Technologies:

 \blacksquare One good can be produced with two technologies t=1,2

Model Description

Firms and Technologies:

- \blacksquare One good can be produced with two technologies t=1,2
- Continuum of (risk-neutral) **price-taking** suppliers of each t

Costs:

• Aggregate cost function, for t = 1, 2:

$$C_t(q_t) = (c_t + \theta_t) q_t + \frac{C''}{2} q_t^2$$

- Cost parameters: $c_2 c_1 \equiv \Delta c > 0$
- Cost shocks: $E[\theta_t] = 0$, $E[\theta_t^2] = \sigma > 0$ and $E[\theta_1 \theta_2] = \rho \sigma \gtrless 0$

Technology Procurement

Model Description

Firms and Technologies:

- \blacksquare One good can be produced with two technologies t=1,2
- Continuum of (risk-neutral) **price-taking** suppliers of each t

Costs:

• Aggregate cost function, for t = 1, 2:

$$C_t(q_t) = (c_t + \theta_t) q_t + \frac{C''}{2} q_t^2$$

- Cost parameters: $c_2 c_1 \equiv \Delta c > 0$
- Cost shocks: $E[\theta_t] = 0$, $E[\theta_t^2] = \sigma > 0$ and $E[\theta_1 \theta_2] = \rho \sigma \gtrless 0$

Social Benefits:

- B(Q), where $Q = q_1 + q_2$, with B' > 0 and B'' < 0
- Ass.: Always optimal to procure units from both technologies

Technology Procurement

The Principal's Problem

The principal maximizes (expected) social welfare:

$$\max W = E\left[B\left(Q\right) - \sum_{t=1,2} C_t\left(q_t, \theta_t\right) - \lambda T(q_1, q_2, \theta_1, \theta_2)\right]$$

• λ : shadow cost of public funds

• $T(q_1, q_2, \theta_1, \theta_2)$: Total payment from procuring $q_1 + q_2 = Q$

The Optimal Mechanism

- The optimal mechanism is a product-mix auction
- The regulator announces technology-specific demands:

$$P_t^d(q_1, q_2) = \frac{B'(q_1 + q_2) - \lambda C''q_t}{1 + \lambda}$$

Firms bid according to technology-specific supply schedules:

$$P_t^s(q_t) = C_t'(q_t; \theta_t)$$

• The allocation is determined by $P_t^d(q_1, q_2) = P_t^s(q_t)$

The Optimal Mechanism

- The optimal mechanism is a product-mix auction
- The regulator announces technology-specific demands:

$$P_t^d(q_1, q_2) = \frac{B'(q_1 + q_2) - \lambda C''q_t}{1 + \lambda}$$

Firms bid according to technology-specific supply schedules:

$$P_t^s(q_t) = C_t'(q_t; \theta_t)$$

• The allocation is determined by $P_t^d(q_1, q_2) = P_t^s(q_t)$

Properties:

- 1 The regulator overcomes asymmetric information
- 2 The cost-efficient allocation is distorted to minimize rents
- 3 The prices of the two technologies are not equalized

Technology Procurement

In practice, regulators do not use mechanisms with these properties

How far are the actual mechanisms from the optimal one?

In practice, regulators do not use mechanisms with these properties

How far are the actual mechanisms from the optimal one?

Regulators typically decide ex-ante between two approaches:

- **1** Technology-neutral: $Q^N \rightarrow p(Q^N)$ and (q_1^N, q_2^N)
- **2** Technology-specific: q_1^S and $q_2^S \rightarrow p_1(q_1^S)$ and $p_2(q_2^S)$

In practice, regulators do not use mechanisms with these properties

How far are the actual mechanisms from the optimal one?

Regulators typically decide ex-ante between two approaches:

- **1** Technology-neutral: $Q^N \rightarrow p(Q^N)$ and (q_1^N, q_2^N)
- **2** Technology-specific: q_1^S and $q_2^S \rightarrow p_1(q_1^S)$ and $p_2(q_2^S)$

These mechanisms do not extract the asymmetric information

This faces regulators with a rent-efficiency trade-off

In practice, regulators do not use mechanisms with these properties

How far are the actual mechanisms from the optimal one?

Regulators typically decide ex-ante between two approaches:

- **1** Technology-neutral: $Q^N \rightarrow p(Q^N)$ and (q_1^N, q_2^N)
- **2** Technology-specific: q_1^S and $q_2^S \rightarrow p_1(q_1^S)$ and $p_2(q_2^S)$

These mechanisms do not extract the asymmetric information

- This faces regulators with a rent-efficiency trade-off
- A technology-neutral approach is good for cost efficiency
 A technology-specific approach is good for reducing rents

Technology-Neutral Auctions

• The principal chooses $Q^N \to$ The market delivers (p^N, q_1^N, q_2^N)

Technology-Neutral Auctions

- \blacksquare The principal chooses $Q^N \to$ The market delivers (p^N,q_1^N,q_2^N)
- The **price** equals the marginal costs of **both** technologies:

$$p^{N} = c_{1} + \theta_{1} + C''q_{1}^{N} = c_{2} + \theta_{2} + C''q_{2}^{N}$$

Technology-Neutral Auctions

- \blacksquare The principal chooses $Q^N \to$ The market delivers (p^N,q_1^N,q_2^N)
- The **price** equals the marginal costs of **both** technologies:

$$p^{N} = c_{1} + \theta_{1} + C''q_{1}^{N} = c_{2} + \theta_{2} + C''q_{2}^{N}$$

Quantities for each technology are given by

$$q_1^N = \frac{Q^N + \Phi^N}{2} + \frac{\Delta\theta}{2C''} > q_2^N = \frac{Q^N - \Phi^N}{2} - \frac{\Delta\theta}{2C''}$$

where

$$\Phi^N \equiv E\left[q_1^N\right] - E\left[q_2^N\right] = \frac{\Delta c}{C''} > 0$$

Technology Procurement

Graphical Representation: Technology-Neutrality

Graphical Representation: Technology-Neutrality

 \blacksquare The principal chooses $(q_1^S,q_2^S) \to$ The market delivers (p_1^S,p_2^S)

 \blacksquare The principal chooses $(q_1^S,q_2^S) \to$ The market delivers (p_1^S,p_2^S)

• Prices are equal to the marginal cost of each technology, t = 1, 2:

$$p_t^S = c_t + \theta_t + C'' q_t^S$$

 \blacksquare The principal chooses $(q_1^S,q_2^S) \to$ The market delivers (p_1^S,p_2^S)

Prices are equal to the marginal cost of **each** technology, t = 1, 2:

$$p_t^S = c_t + \theta_t + C'' q_t^S$$

Quantities allocated to equalize (expected) marginal social costs:

$$(c_1 + C''q_1^S)(1+\lambda) + \lambda C''q_1^S = (c_2 + C''q_2^S)(1+\lambda) + \lambda C''q_2^S$$

 \blacksquare The principal chooses $(q_1^S,q_2^S) \to$ The market delivers (p_1^S,p_2^S)

Prices are equal to the marginal cost of **each** technology, t = 1, 2:

$$p_t^S = c_t + \theta_t + C'' q_t^S$$

• Quantities allocated to equalize (expected) marginal social costs: $(c_1 + C''q_1^S)(1 + \lambda) + \lambda C''q_1^S = (c_2 + C''q_2^S)(1 + \lambda) + \lambda C''q_2^S$

This leads to

$$q_1^S = \frac{Q^S + \Phi^S(\lambda)}{2} \text{ and } q_2^S = \frac{Q^S - \Phi^S(\lambda)}{2}$$

where

$$\Phi^S(\lambda) \equiv q_1^S - q_2^S = \frac{\Delta c}{C''} \frac{1+\lambda}{1+2\lambda} < \Phi^N = \Phi^S(0)$$

Technology Procurement

Graphical Representation: Technology-Specific

Graphical Representation: Technology-Specific

Graphical Representation: Technology-Specific

Technology-Neutral vs Technology-Specific Auctions

 \blacksquare Total quantity is the same: $Q^N=Q^S$

Technology-Neutral vs Technology-Specific Auctions

• Total quantity is the same:
$$Q^N = Q^S$$

• Under separation, the **technology allocation is distorted**:

$$q_1^S - E[q_1^N] = E[q_2^N] - q_2^S = (\Phi^S(\lambda) - \Phi^N)/2 < 0$$
• Total quantity is the same:
$$Q^N = Q^S$$

Under separation, the technology allocation is distorted:

$$q_1^S - E[q_1^N] = E[q_2^N] - q_2^S = (\Phi^S(\lambda) - \Phi^N)/2 < 0$$

• Expected **payments are lower** under separation:

$$E\left[T^{S}\right] - E\left[T^{N}\right] = \frac{C''}{2} \left(\Phi^{S}(\lambda) - \Phi^{N}\right) \Phi^{S}(\lambda) < 0$$

• Total quantity is the same:
$$Q^N = Q^S$$

Under separation, the technology allocation is distorted:

$$q_1^S - E[q_1^N] = E[q_2^N] - q_2^S = (\Phi^S(\lambda) - \Phi^N)/2 < 0$$

Expected payments are lower under separation:

$$E\left[T^{S}\right] - E\left[T^{N}\right] = \frac{C''}{2} \left(\Phi^{S}(\lambda) - \Phi^{N}\right) \Phi^{S}(\lambda) < 0$$

...at the expense of increasing expected costs:

$$E[C^{S}] - E[C^{N}] = \frac{C''}{4} \left[\left(\Phi^{S}(\lambda) - \Phi^{N} \right)^{2} \right] + \frac{E[(\Delta\theta)^{2}]}{4C''} > 0$$

Technology Procurement

Comparing Welfare under the two approaches:

$$\Delta W^{NS} \equiv W^N - W^S = \frac{1}{4C''} \left[2\sigma(1-\rho) - \frac{\lambda^2}{1+2\lambda} (\Delta c)^2 \right]$$

Rents-efficiency trade-off:

- **1** 1st term: efficiency gain under tech-neutrality (quantity adjustment)
- 2 2nd term: excess rents left with the more efficient suppliers

Comparing Welfare under the two approaches:

$$\Delta W^{NS} \equiv W^N - W^S = \frac{1}{4C''} \left[2\sigma(1-\rho) - \frac{\lambda^2}{1+2\lambda} (\Delta c)^2 \right]$$

Rents-efficiency trade-off:

- 1 1st term: efficiency gain under tech-neutrality (quantity adjustment)
- 2 2nd term: excess rents left with the more efficient suppliers

Technology-specific auctions dominate if:

- Well informed principal: $\sigma \to 0$
- \blacksquare Perfectly correlated cost shocks: $\rho \rightarrow 1$
- Strong concern for rents: $\lambda \to \infty$
- Large ex-ante asymmetries: Δc large

Consider a **monopolist** on both technologies:

- Under technology-neutral auctions, it allocates production across technologies to minimize costs
- Under technology-specific auctions, it produces the quantities allocated to each technology
- It charges the monopoly price under the two approaches

Consider a **monopolist** on both technologies:

- Under technology-neutral auctions, it allocates production across technologies to minimize costs
- Under technology-specific auctions, it produces the quantities allocated to each technology
- It charges the monopoly price under the two approaches

Technology-neutrality dominates technology-specific auctions:

- Payments: the same under both approaches
- Cost efficiency: greater under technology-neutrality

Consider a **monopolist** on both technologies:

- Under technology-neutral auctions, it allocates production across technologies to minimize costs
- Under technology-specific auctions, it produces the quantities allocated to each technology
- It charges the monopoly price under the two approaches

Technology-neutrality dominates technology-specific auctions:

- Payments: the same under both approaches
- Cost efficiency: greater under technology-neutrality

How general is this result for lower degrees of market power?

Existing units divided btw dominant firm (d) and fringe (f)
 Shares ω_d = ω and ω_f = 1 − ω

• Costs for each firm i = d, f are now given by

$$C_{it}(q_{it}, \theta_t) = (c_t + \theta_t) q_{it} + \frac{1}{2} \frac{C''}{\omega_i} q_{it}^2$$

Existing units divided btw dominant firm (d) and fringe (f)
 Shares ω_d = ω and ω_f = 1 − ω

• Costs for each firm i = d, f are now given by

$$C_{it}(q_{it}, \theta_t) = (c_t + \theta_t) q_{it} + \frac{1}{2} \frac{C''}{\omega_i} q_{it}^2$$

- Existing units divided btw dominant firm (d) and fringe (f)
 Shares ω_d = ω and ω_f = 1 − ω
- Costs for each firm i = d, f are now given by

$$C_{it}(q_{it}, \theta_t) = (c_t + \theta_t) q_{it} + \frac{1}{2} \frac{C''}{\omega_i} q_{it}^2$$

Prices: (profit maximization by dominant firm)

$$p^{N} = \frac{c_{1} + c_{2} + \theta_{1} + \theta_{2}}{2} + \frac{C''}{1 - \omega^{2}} \frac{Q}{2}$$
$$p_{t}^{S} = c_{t} + \theta_{t} + \frac{C''}{1 - \omega^{2}} q_{t}$$

- Existing units divided btw dominant firm (d) and fringe (f)
 Shares ω_d = ω and ω_f = 1 − ω
- Costs for each firm i = d, f are now given by

$$C_{it}(q_{it}, \theta_t) = (c_t + \theta_t) q_{it} + \frac{1}{2} \frac{C''}{\omega_i} q_{it}^2$$

Prices: (profit maximization by dominant firm)

$$p^{N} = \frac{c_{1} + c_{2} + \theta_{1} + \theta_{2}}{2} + \frac{C''}{1 - \omega^{2}} \frac{Q}{2}$$
$$p_{t}^{S} = c_{t} + \theta_{t} + \frac{C''}{1 - \omega^{2}} q_{t}$$

...resulting in a higher market share for the fringe:

$$\begin{split} q_f^N - q_d^N &= \quad \frac{1-\omega}{1+\omega} Q^N > 0 \\ q_{ft}^S - q_{dt}^S &= \quad \frac{1-\omega}{1+\omega} q_t^S > 0 \end{split}$$

Technology Procurement

- $\hfill \ensuremath{\: \bullet }$ Total quantity is the same across approaches $Q^N=Q^S$
- Q^N and Q^S are decreasing in market power ω

- $\hfill \ensuremath{\: \bullet }$ Total quantity is the same across approaches $Q^N=Q^S$
- $\blacksquare \ Q^N$ and Q^S are decreasing in market power ω
- Market power distorts the allocation across firms

- $\hfill \ensuremath{\: \ }$ Total quantity is the same across approaches $Q^N=Q^S$
- $\blacksquare \ Q^N$ and Q^S are decreasing in market power ω
- Market power distorts the allocation across firms
- Under separation, market power also distorts the **allocation across** technologies: $\Phi^{S}(\lambda, \omega)$ is increasing in ω

- $\hfill \ensuremath{\: \ }$ Total quantity is the same across approaches $Q^N=Q^S$
- $\blacksquare \ Q^N$ and Q^S are decreasing in market power ω
- Market power distorts the allocation across firms
- Under separation, market power also distorts the **allocation across** technologies: $\Phi^{S}(\lambda, \omega)$ is increasing in ω

Welfare:

- Market power reduces welfare under both approaches
- Greater welfare reduction under technology-specific auctions
- ${\ \ } {\ \ } \Delta W^{NS}$ is increasing in $\omega \rightarrow$ Technology-neutrality favoured

Further Results (in the paper)

Technology Banding CO

- \blacksquare The price paid to one technology is increased by $\alpha>1$
- Technology-neutrality: special case with $\alpha = 1$
- Technology-specific auctions: not a special case of banding
- \blacksquare Technology-specific auctions dominate banding if ρ,λ high enough

Minimum Technology Quotas

Price Regulation CO

- Technology-specific prices always dominate a single price
- Comparison *Pvs.Q* follows a corrected Weitzman formula:
 - Multiple technologies favour price regulation
 - The cost of public funds λ (weakly) benefits price regulation

Taking the Model to the Data Renewable Investments in Spain

(a) Solar Installations

(b) Wind Installations

Technology-Neutral

Figure: Average cost curve of solar and wind investments in the Spanish electricity market: Technology Neutral

Technology Procurement

Figure: Average cost curve of solar and wind investments in the Spanish electricity market: Technology Banding

Technology Procurement

Technology-Specific

Figure: Average cost curve of solar and wind investments in the Spanish electricity market: Technology Specific

Costs relative to the optimal mechanism

		Costs				
ρ	λ	Neutral	Specific	Banding	MTQs	
-0.8	0	1.0000	1.0331	1.0000	1.0000	
	0.2	0.9932	1.0284	1.0036	1.0038	
	0.4	0.9886	1.0274	1.0067	1.0031	
0	0	1.0000	1.0167	1.0000	1.0000	
	0.2	0.9919	1.0084	1.0021	1.0011	
	0.4	0.9878	1.0171	1.0080	1.0006	
0.8	0	1.0000	1.0009	1.0000	1.0000	
	0.2	0.9910	1.0000	1.0010	1.0017	
	0.4	0.9864	1.0043	0.9963	1.0075	

Payments relative to the optimal mechanism

		Payments					
ρ	λ	Neutral	Specific	Banding	MTQs		
-0.8	0	1.0500	0.7687	1.0500	0.9881		
	0.2	1.3876	0.9947	1.2130	1.0125		
	0.4	1.4087	0.9996	1.2099	1.0180		
0	0	1.0301	0.7730	1.0301	0.9940		
	0.2	1.3574	1.0186	1.1642	1.0125		
	0.4	1.3746	0.9944	1.1560	1.0135		
0.8	0	1.0069	0.8896	1.0069	1.0005		
	0.2	1.3288	1.0125	1.0951	1.0023		
	0.4	1.3493	1.0011	1.1120	0.9909		

Table: Simulation results relative to the optimal mechanism

Technology Procurement

Social Costs relative to the optimal mechanism

		Social Costs					
ρ	λ	Neutral	Specific	Banding	MTQs		
-0.8	0	1.0000	1.0331	1.0000	1.0000		
	0.2	1.0662	1.0222	1.0423	1.0054		
	0.4	1.1180	1.0188	1.0693	1.0077		
0	0	1.0000	1.0167	1.0000	1.0000		
	0.2	1.0591	1.0103	1.0319	1.0032		
	0.4	1.1105	1.0138	1.0572	1.0082		
0.8	0	1.0000	1.0009	1.0000	1.0000		
	0.2	1.0530	1.0023	1.0183	1.0018		
	0.4	1.0974	1.0033	1.0317	1.0024		

Conclusions

- **1** When to favour **technology-neutrality** vs **technology-separation**?
- 2 When to favour price versus quantity regulation?
- One-size does not fit all: preferred instrument varies case-by-case
- Rent-efficiency trade-off:
 - Technology separation is good for reducing rents
 - Technology neutrality is good for cost efficiency
- Technology separation tends to perform better when...
 - small cost uncertainty, high cost correlation, large cost differences, flat cost curve, low market power

Conclusions

- 1 When to favour technology-neutrality vs technology-separation?
- 2 When to favour price versus quantity regulation?
- One-size does not fit all: preferred instrument varies case-by-case
- Rent-efficiency trade-off:
 - Technology separation is good for reducing rents
 - Technology neutrality is good for cost efficiency
- Technology separation tends to perform better when...
 - small cost uncertainty, high cost correlation, large cost differences, flat cost curve, low market power

Note of caution:

- **Constraints when implementing** *optimal* technology separation
- "Bad" technology separation might be worse than neutrality
- ...even in settings where optimal technology separation dominates

Thank You!

Questions? Comments?

More info at nfabra.uc3m.es and energyecolab.uc3m.es

This Project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 772331)

Related Literature

1 Regulation and Procurement

Laffont and Tirole (1993); Laffont and Martimort (2002)

2 Auctions and Mechanism Design

- Segal (2003)
- Klemperer (2010)
- Manzano and Vives (2020)

3 Other multi-good auction settings

- Mason and Plantinga (2013)
- Montero (2001)

BACK

Banding in a technology-neutral auction

Allow for trading between technologies to reduce payments?

Banding in a technology-neutral auction

Allow for trading between technologies to reduce payments?
Suppose α is the exchange rate across technologies:

$$\max_{Q,\alpha} E\left[B\left(Q\right) - \sum_{t=1,2} C_t(q_t) - \lambda T(q_1, q_2)\right]$$

subject to (equalization of *adjusted* marginal costs)

$$p^{B} = c_{1} + \theta_{1} + C''q_{1}^{B} = \frac{1}{\alpha}(c_{2} + \theta_{2} + C''q_{2}^{B})$$

Banding in a technology-neutral auction

Allow for trading between technologies to reduce payments?
Suppose α is the exchange rate across technologies:

$$\max_{Q,\alpha} E\left[B\left(Q\right) - \sum_{t=1,2} C_t(q_t) - \lambda T(q_1, q_2)\right]$$

subject to (equalization of *adjusted* marginal costs)

$$p^{B} = c_{1} + \theta_{1} + C''q_{1}^{B} = \frac{1}{\alpha}(c_{2} + \theta_{2} + C''q_{2}^{B})$$

leading to

$$\begin{aligned} q_1^B &= \frac{Q^B}{1 + \alpha^B} + \frac{c_2 + \theta_2 - \alpha^B \left(c_1 + \theta_1\right)}{\left(1 + \alpha^B\right) C''} < q_1^N \\ q_2^B &= \frac{\alpha^B Q^B}{1 + \alpha^B} - \frac{c_2 + \theta_2 - \alpha^B \left(c_1 + \theta_1\right)}{\left(1 + \alpha^B\right) C''} > q_2^N \end{aligned}$$

Technology Procurement

Banding results in a steeper price curve:

$$p^{B} = \frac{c_{1} + c_{2} + \theta_{1} + \theta_{2}}{1 + \alpha^{B}} + \frac{C''}{1 + \alpha^{B}}Q^{B}$$

Banding results in a steeper price curve:

$$p^{B} = \frac{c_{1} + c_{2} + \theta_{1} + \theta_{2}}{1 + \alpha^{B}} + \frac{C''}{1 + \alpha^{B}}Q^{B}$$

If no uncertainty $(\sigma \rightarrow 0)$

Banding replicates a technology-specific design:

$$\alpha^B = p_2^S / p_1^S$$

Either design dominates the technology-neutral design, i.e.,

$$W_q^B = W_q^S > W_q^N$$

Technology Procurement

- If uncertainty $(\sigma > 0)$
 - $\bullet \ {\rm Suppose} \ W^S_q > W^N_q$
 - There exists a correlation cut-off, $\bar{\rho} < 1$, above which technology-specific auctions also dominate technology banding:

$$W_q^S > W_q^B > W_q^N$$

- If uncertainty $(\sigma > 0)$
 - Suppose $W_q^S > W_q^N$
 - There exists a correlation cut-off, $\bar{\rho} < 1$, above which technology-specific auctions also dominate technology banding:

$$W_q^S > W_q^B > W_q^N$$

■ Case ρ = −1: W_q^B > W_q^S since expected costs are lower under banding but expected payments are the same

- If uncertainty $(\sigma > 0)$
 - Suppose $W_q^S > W_q^N$
 - There exists a correlation cut-off, $\bar{\rho} < 1$, above which technology-specific auctions also dominate technology banding:

$$W_q^S > W_q^B > W_q^N$$

- Case $\rho = -1$: $W_q^B > W_q^S$ since expected costs are lower under banding but expected payments are the same
- Case $\rho = 1$: $W_q^S > W_q^B$ since both expected costs as well as expected payments are lower under separation

- If uncertainty $(\sigma > 0)$
 - Suppose $W_q^S > W_q^N$
 - There exists a correlation cut-off, $\bar{\rho} < 1$, above which technology-specific auctions also dominate technology banding:

$$W_q^S > W_q^B > W_q^N$$

- Case $\rho = -1$: $W_q^B > W_q^S$ since expected costs are lower under banding but expected payments are the same
- Case $\rho = 1$: $W_q^S > W_q^B$ since both expected costs as well as expected payments are lower under separation
Technology-Banding

- If uncertainty $(\sigma > 0)$
 - Suppose $W_q^S > W_q^N$
 - There exists a correlation cut-off, p̄ < 1, above which technology-specific auctions also dominate technology banding:</p>

$$W_q^S > W_q^B > W_q^N$$

- Case $\rho = -1$: $W_q^B > W_q^S$ since expected costs are lower under banding but expected payments are the same
- Case $\rho = 1$: $W_q^S > W_q^B$ since both expected costs as well as expected payments are lower under separation
- \blacksquare The critical $\bar{\rho}$ is decreasing in and α^B
- When is the optimal α^B low?
 - When low σ , low λ , small Δc and high C''

▶ BACK

Technology-Banding

Figure: Average cost curve of solar and wind investments in the Spanish electricity market: Technology Banding

Technology-banding vs. Technology-neutrality

ρ	λ	Costs	Payments	Social Costs	Banding α
-0.8	0	1.00	1.00	1.00	1.0
-0.8	0.2	1.01	0.87	0.98	1.3
-0.8	0.4	1.02	0.86	0.96	1.4
0	0	1.00	1.00	1.00	1.0
0	0.2	1.01	0.86	0.97	1.3
0	0.4	1.02	0.84	0.95	1.4
0.8	0	1.00	1.00	1.00	1.0
0.8	0.2	1.01	0.82	0.97	1.3
0.8	0.4	1.01	0.82	0.94	1.3

Table: Technology-banding relative to technology-neutrality

Price Regulation

Two tech-specific prices dominate a single tech-neutral price

Price Regulation

Two tech-specific prices dominate a single tech-neutral price

$$\max_{p_1,p_2} E\left[B\left(\sum_{t=1,2} q_t(p_t)\right) - \sum_{t=1,2} C_t(q_t(p_t)) - \lambda T(p_1,p_2)\right]$$

Price Regulation

Two tech-specific prices dominate a single tech-neutral price

$$\max_{p_1,p_2} E\left[B\left(\sum_{t=1,2} q_t(p_t)\right) - \sum_{t=1,2} C_t(q_t(p_t)) - \lambda T(p_1,p_2)\right]$$

 Quantities adjust so that each market price equals the marginal costs of each technology:

$$p_t = c_t + \theta_t + C''q_t(p_t)$$

One price vs. one quantity (Weitzman)

One price dominates one quantity iff

$$W_p^S - W_q^S = \frac{2\sigma}{(C'')^2} \left(B'' + \frac{C''}{2} \right) > 0$$

Figure: P vs Q: Price regulation is superior when marginal benefit is relatively flat

One price vs. one quantity (Weitzman)

One price dominates one quantity iff

$$W_p^S - W_q^S = \frac{2\sigma}{(C'')^2} \left(B'' + \frac{C''}{2} \right) > 0$$

Figure: P vs Q: Quantity regulation is superior when marginal benefit is relatively steep

Two Prices vs Two Quantities

Two prices dominate two quantities iff

$$W_p^S - W_q^S = \frac{\sigma(1+\rho)}{(C'')^2} \left(B'' + \frac{C''}{2} \frac{2}{1+\rho} \right) > 0$$

- Modified Weitzman (1974)'s formula
 - A relative more convex cost favours prices because mistakes on the supply becomes costlier than on the benefit side
 - With multiple technologies, prices favoured (costs more convex)

Two Prices vs Two Quantities

Two prices dominate two quantities iff

$$W_p^S - W_q^S = \frac{\sigma(1+\rho)}{(C'')^2} \left(B'' + \frac{C''}{2} \frac{2}{1+\rho} \right) > 0$$

Modified Weitzman (1974)'s formula

- A relative more convex cost favours prices because mistakes on the supply becomes costlier than on the benefit side
- With multiple technologies, prices favoured (costs more convex)

Cost correlation:

- **1** $\rho = 1$: the two technologies behave as one (Weitzman)
- **2** $\rho < 1$: prices perform relatively better than with a single technology
- **3** $\rho \rightarrow -1$: prices are superior (no benefit uncertainty)

Two Prices vs Two Quantities

Two prices dominate two quantities iff

$$W_p^S - W_q^S = \frac{\sigma(1+\rho)}{(C'')^2} \left(B'' + \frac{C''}{2} \frac{2}{1+\rho} \right) > 0$$

Modified Weitzman (1974)'s formula

- A relative more convex cost favours prices because mistakes on the supply becomes costlier than on the benefit side
- With multiple technologies, prices favoured (costs more convex)

Cost correlation:

- **1** $\rho = 1$: the two technologies behave as one (Weitzman)
- **2** $\rho < 1$: prices perform relatively better than with a single technology
- **3** $\rho \rightarrow -1$: prices are superior (no benefit uncertainty)

Cost of public funds:

• λ does not affect comparison (equal expected payments)

Two prices dominate a single quantity iff

$$W_{p}^{S} - W_{q}^{N} = \frac{\lambda^{2}}{1 + 2\lambda} \left(\frac{\Delta c}{2C''}\right)^{2} + \frac{\sigma(1+\rho)}{(C'')^{2}} \left(B'' + \frac{C''}{2}\right) > 0$$

Two prices dominate a single quantity iff

$$W_{p}^{S} - W_{q}^{N} = \frac{\lambda^{2}}{1 + 2\lambda} \left(\frac{\Delta c}{2C''}\right)^{2} + \frac{\sigma(1+\rho)}{(C'')^{2}} \left(B'' + \frac{C''}{2}\right) > 0$$

Decomposing the welfare effects:

• 1st term
$$(W_p^S - W_p^N)$$
:

Rent-extraction gain from using two prices vs one price

• 2nd term
$$(W_p^N - W_q^N)$$
:

Weitzman's gain from using one price vs one quantity

Two prices dominate a single quantity iff

$$W_{p}^{S} - W_{q}^{N} = \frac{\lambda^{2}}{1 + 2\lambda} \left(\frac{\Delta c}{2C''}\right)^{2} + \frac{\sigma(1+\rho)}{(C'')^{2}} \left(B'' + \frac{C''}{2}\right) > 0$$

Decomposing the welfare effects:

• 1st term
$$(W_p^S - W_p^N)$$
:

Rent-extraction gain from using two prices vs one price

• 2nd term
$$(W_p^N - W_q^N)$$
:

Weitzman's gain from using one price vs one quantity

- Note: We can have $W_q^N > W_p^S > W_q^S$
 - While two prices allow for more quantity adjustment than two quantities, technology neutrality is the only instrument that allows quantities to fully adjust

Two prices dominate a single quantity iff

$$W_{p}^{S} - W_{q}^{N} = \frac{\lambda^{2}}{1 + 2\lambda} \left(\frac{\Delta c}{2C''}\right)^{2} + \frac{\sigma(1+\rho)}{(C'')^{2}} \left(B'' + \frac{C''}{2}\right) > 0$$

Decomposing the welfare effects:

• 1st term
$$(W_p^S - W_p^N)$$
:

Rent-extraction gain from using two prices vs one price

• 2nd term
$$(W_p^N - W_q^N)$$
:

Weitzman's gain from using one price vs one quantity

• Note: We can have
$$W_q^N > W_p^S > W_q^S$$

 While two prices allow for more quantity adjustment than two quantities, technology neutrality is the only instrument that allows quantities to fully adjust

Technology Procurement

BACK

The regulator moves after seeing the bids:

If competitive bidding, technology separation dominates neutrality

The regulator moves after seeing the bids:

- If competitive bidding, technology separation dominates neutrality
- If market power, the dominant firm must be better off
 - The dominant firm can bid so as to induce the regulator to replicate the same outcome as when choosing ex-ante

The regulator moves after seeing the bids:

- If competitive bidding, technology separation dominates neutrality
- If market power, the dominant firm must be better off
 - The dominant firm can bid so as to induce the regulator to replicate the same outcome as when choosing ex-ante
- Can the regulator also be better off when moving ex-post?
- again, a rents-efficiency trade-off:
 - Potential for improved cost efficiency
 - Weaker ability to reduce payments

The regulator moves after seeing the bids:

- If competitive bidding, technology separation dominates neutrality
- If market power, the dominant firm must be better off
 - The dominant firm can bid so as to induce the regulator to replicate the same outcome as when choosing ex-ante
- Can the regulator also be better off when moving ex-post?
- again, a rents-efficiency trade-off:
 - Potential for improved cost efficiency
 - Weaker ability to reduce payments
- Conjecture: moving ex-ante vs. ex-post is relatively better the higher (λ, ρ, ω) , and the lower σ .

BACK