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Abstract

We revisit the e¤ects of switching costs on dynamic competition. We consider sta-

tionary Markovian strategies, with market shares being the state variable, and charac-

terize a relatively simple Markov Perfect pricing equilibrium at which there is switching

by some consumers at all times. For the case of low switching costs and in�nitely lived

consumers, we show that switching costs are pro-competitive in the long-run (steady

state) while the overall e¤ect in the short-run (transient state) depends on market

structure. In particular, switching costs are anti-competitive in relatively concentrated

markets, and pro-competitive otherwise.

Keywords: Switching costs, continuous-time model, Markov-perfect equilibrium,

di¤erential games, market concentration.
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1 Introduction

Switching costs are widespread across a large range of products and services. For instance,

customers must bear a cost when gathering information about a new product or service they

would like to switch to, or when adopting a new technology that has limited compatibility

with the old one. Other switching costs may arise from contractual arrangements (e.g. service

contracts with a certain minimum term), or from loyalty programs (e.g. discount coupons or

frequent �yer cards), to name just a few.

Switching costs face consumers with a potential lock-in e¤ect which gives rise to dynamic

market power. However, since past choices create inertia in consumers� future decisions,
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market share becomes a valuable asset that �rms are willing to �ght for. This gives rise to

two countervailing incentives: on the one hand, �rms want to charge high prices in order to

exploit current customers, but on the other hand they also want to charge low prices in order

to attract new ones. The conventional wisdom suggests that the former incentive dominates,

so that switching costs give rise to anti-competitive e¤ects.1

In this paper, we use a continuous-time in�nite horizon game formulation to determine the

extent to which the conventional wisdom relies on two features: (i) the �nite horizon/�nitely

lived consumers assumptions, and (ii) the absence of switching in equilibrium. We consider

stationary Markovian strategies, with market shares being the state variable, and characterize

a relatively simple Markov Perfect pricing equilibrium at which there is switching by some

consumers at all times.

For the case of low switching costs and in�nitely lived consumers, we show that the

conventional wisdom is only partially correct. Indeed, we �nd that switching costs are pro-

competitive in the long-run (steady state) while the overall e¤ect in the short-run (transient

state) depends on market structure. These conclusions derive from the interplay of the coun-

tervailing incentives mentioned above, together with the presence of switching in equilibrium.

To understand the importance of switching in equilibrium, it is useful to interpret switch-

ing costs as a �rm-subsidy when consumers are loyal to the �rm (i.e., the �rm can a¤ord

raising its price by the value of the switching cost without loosing consumers) or as a �rm-

tax when consumers are switching to the �rm�s product (i.e., the �rm has to reduce its price

by the amount of the switching cost in order to attract new consumers). For a large �rm

(which has more loyal consumers than consumers willing to switch into its product), the net

e¤ect of switching costs is that of a subsidy, whereas for a small �rm the net e¤ect of switching

costs is that of a tax. Therefore, an increase in switching costs introduces a wedge in the

pricing incentives of the two �rms: while the large �rm becomes less aggressive, the small

�rm becomes more so, thus inducing market shares to converge over time. In steady state

�rms become fully symmetric, so that the tax and the subsidy e¤ects induced by an increase

in switching costs cancel out for both �rms.

However, in a dynamic setting, �rms want to attract new consumers not simply as a source

of current pro�ts but also to exploit them in the future. Since the value of new customers is

greater the higher the switching costs, an increase in switching costs fosters more competitive

outcomes in steady state.2

In contrast, the short-run e¤ect of an increase in switching costs is ambiguous. While

1This conclusion is also supported on a series of models with either a �nite horizon (e.g. Klemperer

(1987a)) or with �nitely lived consumers (e.g. Padilla (1995)), in all of which switching does not occur in

equilibrium. Other papers include Klemperer (1987b), Farrell and Shapiro (1988), To (1995) and Villas-Boas

(2006), among others. Klemperer (1995) and Farrell and Klemperer (2007) provide a survey of this literature.
2There are other recent papers showing the potential pro-competitive e¤ect of switching costs. See Viard

(2007), Cabral (2011,2012), Dubé et al. (2009), Shi et al. (2006), Doganoglu (2010), Arie and Grieco (2013),

and Rhodes (2013). Our paper di¤ers from this literature, which features overlapping generation models for

�nitely lived consumers and discrete time models of dynamic price competition.
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higher switching costs reduce the prices charged by the small �rm, the e¤ect on the large

�rm�s pricing incentives depends upon the level of market dominance. With strong market

dominance, an increase in switching costs induces higher prices by the dominant �rm. This

corresponds with the conventional wisdom. However, under weak market dominance, an

increase in switching costs induces lower prices by both �rms. In this situation, switching

costs are pro-competitive also in the short-run.

2 The Model

We consider a market in which two �rms compete to provide a service which is demanded

continuously over time. Firms have identical marginal costs normalized to zero. There is a

unit mass of in�nitely lived consumers. We assume that all consumers are served. Letting

xi(t) denote the market share of �rm i 2 f1; 2g, this implies x1(t) + x2(t) = 1.
Switching opportunities for consumers take place over time according to independent

Poisson processes with unit rate,3 i.e., in the interval (t; t + dt), the expected fraction of

consumers considering switching or not between �rms is dt. We assume that consumers

cannot anticipate in�nite equilibrium price trajectories and thus can only react to current

prices.4 Conditional on having the opportunity to switch, qji 2 (0; 1) denotes the probability
with which a customer currently served by �rm j switches to �rm i. Accordingly, qjj = 1�qji
is the probability that a customer already served by �rm j maintains this relationship. Firm

i�s net (expected) change in market share in the in�nitesimal time interval (t; t + dt] can be

expressed as

xi(t+ dt)� xi(t) = qjixj(t)dt� (1� qii)xi(t)dt; (1)

i.e., the net (expected) change in market share is equal to the expected number of customers

that �rm i steals from �rm j, minus the customers that �rm j steals from �rm i. The revenue

accrued in the in�nitesimal time interval (t; t+ dt] is the sum of pixi(t)dt (i.e., revenue from

current customers) and pi[qjixj(t) � (1 � qii)xi(t)]dt (i.e., revenue gain/loss from new/old

customers). Hence, the rate at which revenue is accrued by �rm i, say �i(t), can be written

as

�i(t) = pixi(t) + pi[qjixj(t)� (1� qii)xi(t)]: (2)

In order to characterize the switching probabilities, we assume a discrete choice model in

which the net surplus from product i 2 f1; 2g at time t > 0 is of the form

ui(t) = vi(t)� pi(t)
3The analysis is robust to arrival rates di¤erent from one. However, this would add an additional parameter

in the model, with only a scaling e¤ect. One could instead envisage a model in which the arrival rate is a

function of �rms�prices. However, this would further complicate the analysis, and it is out of the scope of

the current paper.
4The main conclusions of the paper are preserved if we allowed for more sophisticated consumers. See

Section 3 for further comments on this issue. See Fabra and García (2013).
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wherein we make the following standing assumption:5

Assumption: The collection fvi(t) : t > 0g is i.i.d. and vi(t)�vj(t) is uniformly distributed
in
�
�1
2
; 1
2

�
.

When an opportunity to switch arises for a given customer, he would opt for �rm i (if

currently served by �rm j) provided that

ui �
s

2
= vi � pi �

s

2
> uj = vj � pj

where s
2
is the switching cost incurred (s < 1). Hence, the probability that such a customer

served by �rm j switches to �rm i, qji, is given by

qji = Pr
�
vj � vi < �

s

2
+ pj � pi

�
=
1

2
(1� s)� pi + pj

where we assume pi � pj 2
�
�1
2
(1� s); 1

2
(1 + s)

�
. Conversely, if �rm i serves the selected

consumer, he will maintain this relationship if

ui = vi � pi > uj = vj � pj �
s

2
�

Hence, the probability qii that a customer already served by �rm i maintains this relationship

is6

qii = Pr
�
vj � vi <

s

2
� pi + pj

�
=
1

2
(1 + s)� pi + pj:

Substituting qji and qii into (1) and taking the limit, as dt! 0, we obtain

_xi(t) = �xi(t)(1� s) +
1� s
2

� pi + pj�

Substituting qji and qii into (2), we obtain the rate at which revenue is accrued by �rms

1 and 2,

�1(t) = p1

�
x1(t)s+

1� s
2

� p1 + p2
�

�2(t) = p2

�
�x1(t)s+

1 + s

2
+ p1 � p2

�
�

Given the assumption of full market coverage, payo¤ relevant histories are subsumed in the

state variable x1 2 [0; 1]. Assume a discount rate � > 0. A stationary Markovian pricing

policy is a map pi : [0; 1] ! [0; �p] where �p > 0 is the maximum price ensuring full-market

coverage. We restrict our attention to the set of continuous and bounded Markovian pricing

5Note this assumption is consistent with Hotelling�s model of product di¤erentiation with product varieties

at the extremes of a linear city uniformly distributed in [0; 12 ]. Results are robust to allowing for more general

distributions.
6Note that qii � qji re�ects the fact that, for given prices, �rm i is more likely to retain a randomly chosen

current customer than to �steal�one from �rm j.
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policies, say P. For a given strategy combination (pi; pj) 2 P � P and initial condition,

x1(�) 2 [0; 1] and � <1, the value function is de�ned as

V
(pi;pj)
i (x1(�)) =

Z 1

�

e��t�i(pi(x1(t)); pj(x1(t)); x1(t))dt�

A stationary Markovian strategy combination (p�i ; p
�
j) 2 P � P is a Markov Perfect equilib-

rium (MPE) if and only if

V
(p�i ;p

�
j )

i (x1(�)) � V
(pi;p

�
j )

i (x1(�));

for all pi 2 P ; i 2 f1; 2g, x1(�) 2 [0; 1] and � <1.

2.1 Equilibrium Analysis

The following Proposition characterizes equilibrium pricing in this game.

Proposition 1 Assuming s < 3
5
,the unique Markov Perfect Equilibrium in a¢ ne pricing

strategies is:7

p1(x1) = 1
3
(s� a)

�
x1 � 1

2

�
+ p�

p2(x1) = �1
3
(s� a)

�
x1 � 1

2

�
+ p�

where a 2
�
0; s

2

�
is the smallest root of the quadratic equation

2a2 � 3
�
2 + �� 7

9
s

�
a+

2

3
s2 = 0; (3)

and

p� =
1

2
+

a

2(1 + �)
� s
3

1 + a
2

1 + �
�

In the proof of Proposition 1 we make use of the notion of a Hamiltonian (see Dockner et

al. (2000)), that is:

Hi = e
��t[�i + �i _x1];

for i 2 f1; 2g ; where �i = @Vi
@x1

is the co-state variable. The necessary and su¢ cient conditions

for a Markov Perfect equilibrium are

@�i
@pi

= ��i
@ _x1
@pi

; (4)

which capture the inter-temporal trade-o¤s inherent in equilibrium pricing, i.e., marginal

revenue equals the (marginal) opportunity cost (value loss) associated with market share

reduction, and the Hamilton-Jacobi equations

�@Hi

@x1
� @Hi

@pj

@pj
@x1

= _�i � ��i: (5)

7Other MPE in non-linear strategies may exist. However, a complete characterization of MPE is beyond

the scope of this paper.
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In the proof of Proposition 1 we show that the system of partial di¤erential equations (4)

and (5) has a closed-form solution.

Note that condition (4) gives rise to a sort of �instantaneous�best reply functions

R1 (p2) = 1
2

�
p2 + s

�
x1 � 1

2

�
+ 1

2

�
� �1

2
;

R2 (p1) = 1
2

�
p1 � s

�
x1 � 1

2

�
+ 1

2

�
+ �2

2
�

Therefore, as compared to a static setting (in which �i would equal zero), �rms�best

reply functions in the dynamic setting shift in, thus implying that equilibrium prices are

lower. This is a direct consequence of the fact that �rms compete more aggressively in order

to attract new customers, as these will become loyal in the future. In the proof of Proposition

1 we show that �1 = ax1 + b > ��2 = �ax1 + b > 0. Hence, in the dynamic setting, the

large �rm behaves less aggressively than the small �rm, i.e., R1 (p) > R2 (p) ; thus implying

that the large �rm�s equilibrium price is higher than that of the small �rm, regardless of the

value of s,

p1(x1)� p2(x2) =
2

3
(s� a)

�
x1 �

1

2

�
> 0�

Concerning dynamics, the fact that the large �rm has the high price implies that the large

�rm concedes market share in favour of the smaller one. Therefore, market share asymmetries

fade away over time. In particular, the equilibrium state dynamics are described by

_x1(t) = �x1(t)(1� s) +
1� s
2

� p1(x1(t)) + p2(x1(t))

= �
�
x1(t)�

1

2

��
1� s+ 2a

3

�
< 0;

whose solution is

x1(t) = x1(0)e
�(1� s+2a

3 )t +
1

2
�

Furthermore, as the large �rm loses market share, its incentives to price high diminish,

and competition becomes more intense. Hence, the average price in the market is decreasing

over time. Let p(t) = p1(x1(t))x1(t) + p2(x1(t))x2(t) denote the average price charged in the

market. After some algebra, it follows that

_p(t) =

�
4

3
(s� a)

�
x1 �

1

2

��
_x1 < 0�

Note that in steady state market shares become symmetric, as limt!1 x1(t) =
1
2
; and both

�rms�equilibrium prices converge to p�.

2.2 Comparative Dynamics

We end the analysis by performing comparative dynamics of equilibrium outcomes as switch-

ing costs increase.
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Lemma 1 In the short-run:
(i) An increase in s reduces the price charged by the small �rm;

(ii) There exists bx1(s) > 1=2 such that an increase in s reduces the price charged by the
large �rm if and only if x1 < bx1(s):
(iii) In the short-run, there exists ex1 > bx1(s) such that an increase in s reduces the average

market price if and only if x1 < ex1:
When switching costs increase, the small �rm prices more aggressively as the customers

served by the large �rm would not switch otherwise. Also, the value of attracting customers

is greater the higher s as those customers will be locked-in in the future.

In contrast, the e¤ects of an increase in s on the large �rm�s pricing incentives are am-

biguous. On the one hand, the large �rm can a¤ord charging a higher price to its customers

given that they are protected by a higher switching cost. However, an increase in s also

enhances the value of attracting new customers. Since the incentives to charge higher prices

today are greater the larger the �rm�s market share, there exists a critical market share bx1(s)
below (above) which the long-run (short-run) e¤ect dominates, so that the price charged by

the large �rm decreases (increases) in s.

Although x1 < bx1(s) is su¢ cient for the average market price to go down as s goes up, it
is by no means necessary. In particular, the average market price starts decreasing in s even

before the large �rm�s market share falls down to bx1(s) since the lower prices charged by the
small �rm more than compensate for the higher prices charged by the large one.

Switching costs induce other anti-competitive e¤ects. In particular, they slow down the

transition to a symmetric market structure, and hence lead to a lower rate of decline in average

prices. This anti-competitive e¤ect arises regardless of the degree of market dominance.

Lemma 2 An increase in switching costs s:
(i) reduces the rate of decline of average prices and

(ii) delays the transition to the steady state.

In the long-run, switching costs are pro-competitive: the higher the switching cost, the

lower the equilibrium price in steady state. Indeed, once �rms�market shares have become

fully symmetric, only the incentive to attract new customers plays a role. Hence, an increase

in s, which increases the future value of current sales, makes competition �ercer and thus

lowers equilibrium prices.

Proposition 2 In steady state, an increase in switching costs reduces prices.

3 Conclusions and Discussion

We have shown that (relatively low) switching costs can be pro-competitive in a model with

in�nitely lived consumers. In a Markov Perfect equilibrium, the dominant �rm concedes
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market share by charging higher prices to current customers. As the market becomes less

concentrated, price competition becomes �ercer. The average price charged in the market

is decreasing over time and in the long-run equilibrium prices are decreasing in the level of

switching costs.

However, in the short-run, switching costs can have an ambiguous e¤ect on prices, de-

pending on market structure. When market shares are su¢ ciently asymmetric, the increase

in the price charged by the large �rm outweighs the reduction in the price charged by the

smaller competitor. It is only when �rms�market shares have become su¢ ciently symmetric

over time that switching costs become unambiguously pro-competitive.

For tractability, we have focused on linear equilibria, but believe that other equilibria

- should they exist - would depict similar properties. If switching costs increase, the static

e¤ects cancel out when �rms are symmetric, and this would remain true regardless of the class

of MPE considered. Switching costs are pro-competitive since only the dynamic incentive to

attract new consumers prevails. Again, since this incentive does not depend on �rms�current

market shares, it would arise regardless of how these enter into �rms� strategies. Other

MPE could have di¤erent rates of convergence to the steady state, but they would share the

qualitative features of the linear equilibrium characterized in this paper.8
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Appendix: Proofs of Lemmas and Propositions

Proof of Proposition 1

The Hamiltonians are

Hi = e
��t[�i + �i _x1];

for i = 1; 2. The Hamiltonians are strictly concave so that �rst order conditions for MPE are

also su¢ cient (see Dockner et al. (2000)),

@Hi

@pi
= 0;
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�@Hi

@x1
� @Hi

@pj

@pj
@x1

= _�i � ��i;

for i = 1; 2. These respectively lead to:

p1 =
1

2

�
p2 + s

�
x1 �

1

2

�
+
1

2
� �1

�
(A.1)

�sp1 + (1� s)�1 � (p1 + �1)
@p2
@x1

= _�1 � ��1 (A.2)

p2 =
1

2

�
p1 � s

�
x1 �

1

2

�
+
1

2
+ �2

�
(A.3)

sp2 + (1� s)�2 � (p2 � �2)
@p1
@x1

= _�2 � ��2� (A.4)

Equations (A.1) and (A.3) are �rms�best reply functions. Using them we can obtain equi-

librium prices,

p1 =
s

3

�
x1 �

1

2

�
+
1

2
+
1

3
(�2 � 2�1)

p2 = �s
3

�
x1 �

1

2

�
+
1

2
+
1

3
(2�2 � �1)�

Thus,
@p2
@x1

= �@p1
@x1

= �s
3
�

Substituting into (A.2) and (A.4) we obtain

2s

3
p2 + (1�

2s

3
)�2 = _�2 � ��2

�2s
3
p1 + (1�

2s

3
)�1 = _�1 � ��1�

We solve this system of di¤erential equations by the method of undetermined coe¢ cients.

Assume �i = ai(x1 � 1
2
) + bi for i = 1; 2. Substitution into the last equation yields

�2s
3

�
s
3
(x1 � 1

2
) + 1

2
+ 1

3
(a2(x1 � 1

2
) + b2 � 2a1(x1 � 1

2
)� 2b1)

�
+ (1� 2s

3
)(a1(x1 � 1

2
) + b1)

=

a1 _x1 � �(a1(x1 � 1
2
) + b1)

=

a1
�
�x1(1� s) + 1�s

2
� p1 + p2

�
� �a1(x1 � 1

2
)� �b1

=

a1
�
�x1(1� s) + 1�s

2
� 2s

3
(x1 � 1

2
) + �1+�2

3

�
� �a1(x1 � 1

2
)� �b1

=

a1

�
�(1� s)(x1 � 1

2
)� 2s

3
(x1 � 1

2
) +

a1(x1� 1
2
)+b1+a2(x1� 1

2
)+b2

3

�
� �a1(x1 � 1

2
)� �b1

This results in the following two equations:

�2
9
s2 +

2

9
s(2a1 � a2) + (1�

2s

3
)a1 = �(1�

s

3
)a1 +

1

3
(a1 + a2)a1 � �a1 (A.5)
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�s
3
� 2s
9
(b2 � 2b1) + b1(1�

2s

3
) =

1

3
(b1 + b2)a1 +

a1
2
(1� s

3
)� �b1 (A.6)

In a similar fashion,
2s
3

�
� s
3

�
x1 � 1

2

�
+ 1

2
+ 1

3
(2a2

�
x1 � 1

2

�
+ 2b2 � a1

�
x1 � 1

2

�
� b1)

�
+ (1� 2s

3
)(a2

�
x1 � 1

2

�
+ b2)

=

a2 _x1 � �(a2
�
x1 � 1

2

�
+ b2)

=

a2

�
�x1(1� s) + 1�s

2
� 2s

3
(x1 � 1

2
) +

a1(x1� 1
2)+b1+a2(x1�

1
2)+b2

3

�
� �a2

�
x1 � 1

2

�
� �b2

=

a2

�
�(1� s)(x1 � 1

2
)� 2s

3
(x1 � 1

2
) +

a1(x1� 1
2)+b1+a2(x1�

1
2)+b2

3

�
� �a2

�
x1 � 1

2

�
� �b2

We obtain two additional equations:

�2
9
s2 +

2

9
s(2a2 � a1) + (1�

2s

3
)a2 = �(1�

s

3
)a2 +

1

3
(a1 + a2)a2 � �a2 (A.7)

s

3
+
2s

9
(2b2 � b1) + b2(1�

2s

3
) =

1

3
(b1 + b2)a2 +

a2
2
(1� s

3
)� �b2 (A.8)

Thus, substracting (A.5) from (A.7) we get:�
1� s

3
� 1
3
(a1 + a2) +

2

9
s+ 1� 2s

3
+ �

�
(a1 � a2) = 0�

Hence, a1 � a2 = 0. Letting a1 = a2 = a; we solve the quadratic equation implicit in (A.5):

2a2 � 3
�
2 + �� 7

9
s

�
a+

2

3
s2 = 0�

Then (A.6) and (A.8) imply b1 + b2 = 0 and

b1 =
s(1 + a

2
)

3(1 + �)
� a

2(1 + �)
�

So the equilibrium strategies can be rewritten as

p1 =
s

3

�
x1 �

1

2

�
+
1

2
+
1

3
(�2 � 2�1);

p2 = �s
3

�
x1 �

1

2

�
+
1

2
+
1

3
(2�2 � �1)�

Or equivalently,

p1 =
s� a
3

�
x1 �

1

2

�
+
1

2
+

a

2(1 + �)
�
s(1 + a

2
)

3(1 + �)

p2 = �s� a
3

�
x1 �

1

2

�
+
1

2
+

a

2(1 + �)
�
s(1 + a

2
)

3(1 + �)
�

Finally, we note that given the assumption s < 3
5
the pricing policies satisfy

p1(x1)� p2(x1) =
2

3
(s� a)

�
x1 �

1

2

�
2
�
�1� s

2
;
1� s
2

�
;

so that q0; q1 2 (0; 1).
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Proof of Lemma 1

We �rst note that implicit di¤erentiation in (3) yields:

@a

@s
=

4s+ 7a

9(2 + �)� 7s� 12a 2 (0; 1)�

(i) Using this result, it is straightforward to see that @p2
@s
< 0: Taking derivatives,

@p2
@s

= �1
3

��
1� @a

@s

��
x1 �

1

2

�
+
@a

@s

�
�1
3

1

1 + �

�
2

3

�s
3
+
a

2

�
+
�
1� s

3

��1
3
+
1

2

@a

@s

��
�

(ii) Taking derivatives,

@p1
@s

=
1

3

��
1� @a

@s

�
x1 �

1

2

�
1 +

@a

@s

��
�1
3

1

1 + �

�
2

3

�s
3
+
a

2

�
+
�
1� s

3

��1
3
+
1

2

@a

@s

��
�

The second term is negative, while the sign of the �rst term cannot be determined in

general. Solving for x1, expression above is positive if and only if

x1 > bx1(s) = 1�
1� @a

@s

� � 1

1 + �

�
2

3

�s
3
+
a

2

�
+
�
1� s

3

��1
3
+
1

2

@a

@s

��
+
1

2

�
1 +

@a

@s

��
:

The fact that bx1(s) > 1
2
follows since @p1

@s
is weakly increasing in x1 and

@p1
@s
< 0 for x1 = 1

2
;

as the �rst term becomes �@a
@s
< 0:

(iii) As s increases, the average price changes as follows:

@p (t)

@s
=
@ (p1 � p2)

@s
x1 + (p1 � p2)

@x1
@s

+
@p2
@s
�

The �rst term is positive given that an increase in s enlarges the di¤erence between the

prices charged by the two �rms. This follows from the fact that the price di¤erential p1 � p2
is directly proportional to s� a and, as shown above, @a

@s
< 1: However, the second and third

terms are negative. Hence, the sign of the e¤ect of s on average prices is ambiguous. In

particular, an increase in s leads to a reduction in the average price only when �rms are

su¢ ciently symmetric, i.e., if x1 < ex1. Note that ex1 > bx1(s) as x1 < bx1(s) is a su¢ cient
condition for the average price to go down in s, as both �rms�prices are decreasing in s (part

(ii)).

Proof of Lemma 2

(i) It follows from the fact that _p(t) is inversely proportional to s � a and, as shown above,
@a
@s
< 1: (ii) The transition to the steady state occurs at a rate which is inversely proportional

to s+2a
3
; and as shown above, @a

@s
> 0:
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Proof of Proposition 2

Steady-state prices are

lim
t!1

pi(t) = p
� =

1

2
+

a

2(1 + �)
�
s(1 + a

2
)

3(1 + �)
�

Taking derivatives w.r.t. s;

@p�

@s
=

a

2(1 + �)

@a

@s
�

1 + a
2

3(1 + �)
� s

6(1 + �)

@a

@s
< 0;

where the inequality follows from @a
@s
2 (0; 1) and a < s

2
�
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